Anatomy of Quercus variabilis Charcoal Manufactured at Various Temperatures

제조 온도에 따른 굴참나무 목탄의 해부학적 특성

  • 김남훈 (강원대학교 산림과학대학) ;
  • 황원중 (강원대학교 산림과학대학) ;
  • 권성민 (강원대학교 산림과학대학) ;
  • 권구중 (강원대학교 산림과학대학) ;
  • 이성제 (강원도 산림개발연구원)
  • Received : 2006.07.04
  • Accepted : 2006.07.11
  • Published : 2006.07.25

Abstract

Anatomy of Quercus variabilis charcoal was investigated by scanning electron microscopy. Charcoal was prepared in an electric furnace under nitrogen gas atmosphere at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1000^{\circ}C$ for 10 min. The structure of charcoal was significantly affected by charring temperature. In cross section, charcoal prepared at $400^{\circ}C$ exhibited a smooth clean surface. As the charring temperature increased, the surface became more rough and increasingly disrupted. The cell walls appeared homogeneous and glass-like. Ray parenchyma cells showed very little separation from each other in radial section at $400^{\circ}C$. At $600^{\circ}C$ and above there is an apparent disintegration of the middle lamella, resulting in a separation of the ray cells. The $2{\sim}4{\mu}m$ wart-like protuberances were observed on the surfaces of the parenchyma cells. These structures were seen in charcoal prepared at all temperatures. Distinctive features can be seen in multiseriate rays as large crack and split. Rhomboidal crystals in crystalliferous cells had a smooth surface at $400^{\circ}C$ and $600^{\circ}C$, but the crystals had a sponge like appearance at $800^{\circ}C$ and $1000^{\circ}C$.

제조 온도에 따른 목탄의 해부학적 특성을 주사전자현미경법으로 조사하였다. 목탄은 실험실용 전기로를 이용하여 $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, $1000^{\circ}C$의 각 온도 조건에서 굴참나무재를 10분간 탄화시켜 제조하였다. 관찰 결과 목탄의 구조는 제조 온도에 따라 큰 차이를 보였다. $400^{\circ}C$에서 제조한 목탄의 횡단면은 깨끗하게 나타났으나 온도 증가에 따라 거칠고 할렬이 많은 단면을 나타냈다. 세포벽은 벽층 구조가 소실되고 유리와 같이 매끄럽고 균질한 구조를 보여주었다. $400^{\circ}C$에서 제조한 목탄은 유세포 상호간에 간극이 거의 없었으나 $600^{\circ}C$ 이상에서는 유세포 간에 분리가 발생하여 간극이 관찰되었다. 방사유세포와 축방향유세포의 표면에는 직경 $2{\sim}4{\mu}m$의 사마귀 모양의 돌기물이 다수 관찰되었고, $600^{\circ}C$ 이상에서 광방사조직에 커다란 할열할렬이 자주 발생하였다. 결정 세포 중에 존재하는 결정의 표면은 제조 온도에 따라 다르게 나타났다. 즉, $400^{\circ}C$$600^{\circ}C$에서 제탄한 목탄 중의 결정은 매끄러운 표면을 나타내고 있으나 $800^{\circ}C$ 이상에서 제조한 목탄의 것은 표면이 거칠고 작은 구멍이 나타나 스폰지와 같은 외형을 보여주었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Angeles, G. 2001. New techniques for the anatomical study of charcoalified wood. IAWA Journal 22(3): 245-254 https://doi.org/10.1163/22941932-90000264
  2. Beall, F. C, P. R. Blankenhorn, and G. R. Moore. 1974. Carbonized wood physical properties and use as an SEM preparation. Wood Science 6(3): 212-219
  3. Blankenhorn, P. R., G. M. Jenkins, and D. E. Kline. 1972. Dynamic mechaical properties and microstructure of some carbonized hardwoods. Wood and Fiber 4(3): 212-224
  4. Blankenhorn, P. R., D. P. Barnes, D. E. Kline, and W. K. Murphey. 1978. Porosity and pore size distribution of black cherry carbonized in an inert atmosphere. Wood Science 11(1): 23-29
  5. Cutter, B. E., B. G. Cumbie, and E. A. McGinnes Jr. 1980. SEM and shrinkage analyses of southern pine wood following pyrolysis. Wood Sci. Technol. 14: 115-130 https://doi.org/10.1007/BF00584041
  6. Cutter, B. E. and E. A. McGinnes Jr. 1981. A note on density change patterns in charred wood. Wood and fiber 13(1): 39-44
  7. Elder, T. J., W. K. Murphey, and P. R. Blankenhorn. 1979. A note on the thermally induced changes of intervessel pits in black cherry(Prunus serotina EHRH). Wood and fiber 11(3): 179-183
  8. Franceschi, V. R. and H. T. Horner, Jr. 1980. Calcium oxalate crystals in plants. The botanical review 46(4): 361-427 https://doi.org/10.1007/BF02860865
  9. Frey-Wyssling, A. 1981. Crystallography of the two hydrates of crystalline calcium oxalate in plants. Amer. J. Bot. 68(1): 130-141 https://doi.org/10.2307/2442984
  10. Kim, N. H. and R. B. Hanna. 2006. Morphological characteristics of Quercus variabilis charcoal prepared at different temperatures. Wood Sci Technol. (in press)
  11. McGinnes, E. A. Jr, S. A. Kandeel, and P. S. Szopa. 1971. Some structural changes observed in the transformation of wood into charcoal. Wood and Fiber 3(2): 77-83
  12. Nishiyama, K., T. Hata, Y. Imamura, and S. Ishihara. 1998. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J Wood Sci. 44: 56-61 https://doi.org/10.1007/BF00521875
  13. Prior, J. and K. L. Alvin. 1983. Structural changes on charring woods of dichrostachys and salix from southern Africa. IAWA Bulletin 4(4): 197-206 https://doi.org/10.1163/22941932-90000782
  14. Prior, J. and K. L. Alvin. 1986. Structural changes on charring woods of dichrostachys and salix from southern Africa: The effect of moisture content. IAWA Bulletin 7(3): 243-250 https://doi.org/10.1163/22941932-90000993
  15. Prior, J. and P. Gasson. 1993. Anatomical changes on charring six African hardwoods. IAWA J. 14(1) 77-86 https://doi.org/10.1163/22941932-90000579
  16. Slocum, D. H., E. A. McGinnes Jr., and F. C. Beall. 1978. Charcoal yield, shrinkage, and Density changes during carbonization of oak and hickory woods. Wood science vol. 11(1): 42-47
  17. Webb, M. A. 1999. Cell-mediated crystallization of calcuim oxalate in plants. The Plant Cell. 11: 751-761 https://doi.org/10.2307/3870833
  18. 권성민, 김남훈. 2006. 목재의 탄화기구 해석( I ). 목재공학 34(3): 8-14
  19. 국립산림과학원. 2005. 임산물품질인증지침. P. 1-141
  20. 황병호 外 11人. 1998. 목질바이오매스 선진문화사. 70-75