Malignant Solitary Pulmonary Nodule: Enhancement Patterns on Contrast-enhanced Dynamic CT with the Histopathologic Evaluation

악성 고립성 폐결절: 역동적 조영증강 전산화단층촬영에서의 조영증강 형태와 조직병리 소견에 관한 연구

Cho, Young-Min;Kim, Yun-Hyeon;Seon, Hyun-Ju;Park, Jin-Gyoon;Kim, Jae-Kyu;Jeong, Gwang-Woo;Kang, Heoung-Keun
조영민;김윤현;선현주;박진균;김재규;정광우;강형근

  • Published : 20060000

Abstract

Purpose: We wanted to evaluate the potential role of dynamic incremental computed tomography (CT) for making the diagnosis of malignant solitary pulmonary nodule (SPN) by investigating the dynamic enhancement patterns. Materials and Methods: Forty patients with presumed malignant SPN (diameter < 30 mm) were selected for dynamic incremental chest CT scanning. Histopathologic diagnoses of the malignant SPNs were obtained by surgical excision (n=8) and transthoracic needle biopsy (n=32), and they were squamous cell carcinoma (n=16), adenocarcinoma (n=14), small cell carcinoma (n=5), bronchioloalveolar carcinoma (n=3), and large cell carcinoma (n=2). CT scans were performed at the region of interest (ROI) of the lung nodule before and after contrast enhancement. The dynamic incremental CT scans after contrast enhancement were performed at 15 seconds, 30 seconds, 45 seconds, 60 seconds, 90 seconds, 2 minutes, 3 minutes and 4 minutes. The degree of contrast enhancement according to the time course and the time of maximum enhancement of the malignant nodules were recorded by measuring the Hounsfield Unit (HU) of the nodules at the ROI. We assessed the differences of the contrast enhancement patterns among the histopathologic subtypes of malignant SPN. Results: In malignant SPN, the average time of maximum contrast enhancement was 62.2${\pm}$16.2 seconds, and the average degree of maximum contrast enhancement was 66.4${\pm}$22.17 HU. Most primary lung cancer showed rapid contrast enhancement with slow washout. The differences of the enhancement patterns among the histopathologic subtypes were not statistically significant (p > 0.05). Conclusion: Dynamic incremental chest CT was useful for making the diagnosis of malignant SPN that showed an established dynamic contrast enhancement pattern regardless of the histopatholgic subtypes.

목적: 악성 고립성 폐결절(Solitary Pulmonary Nodule, 이하 SPN)의 조영 증강 양상을 분석하여 이의 진단에서 역동적 조영 증강 흉부 전산화단층촬영(Computed Tomography, 이하 CT)의 잠재적 역할에 대하여 알아보고자 하였다. 대상과 방법: 역동적 조영증강 흉부 CT를 시행한 30 mm 미만의 악성 SPN을 가진 40명의 환자를 대상으로 하였다. 각각의 결절에 대해 수술적 절제(n = 8) 또는 경피적 세침 조직검사(n = 32)를 시행하여 병리조직학적 결과를 얻었으며, 이들의 조직병리학적 아형들은 편평상피세포암(n = 16), 선암(n = 14), 소세포암(n = 5), 세기관지폐포암(n = 3), 그리고 대세포암(n = 2) 이었다. SPN의 관심영역(region of interest, ROI)에 대해 조영전과 후에 역동적 조영증강 CT를 시행했다. 역동적 조영증강 CT는 조영제 주입 후 각각 15초, 30초, 45초, 60초, 90초, 2분, 3분, 4분에 시행하였다. SPN의 관심구역(region of interest, ROI)에서 하운스필드 수치(HU)를 측정함으로써 결절의 시간경과에 따른 조영증강 정도와 최대 조영증강에 이르는 시간을 기록했다. 각각의 악성 SPN의 조직병리학적 아형에 따른 조영증강 양상의 차이를 평가하였다. 결과: 악성 SPN의 최대 조영증강 시간의 평균은 62.2${\pm}$16.2초이었고 최대 조영증강 정도의 평균은 66.42${\pm}$22.17 HU이었다. 대부분의 악성 SPN은 빠른 조영증강과 함께 느린 씻음을 보였으나, 이들의 조직병리학적 아형에 따른 조영증강 형태는 통계적으로 유의한 차이를 관찰할 수 없었다(p > 0.5). 결론: 역동적 조영증강 CT는 악성 SPN의 조직병리학적 아형들 간에 차이를 보여주지는 않았지만, 조영증강 양상에 의한 이들의 진단에 유용하리라 생각한다.

Keywords

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-1186 https://doi.org/10.1056/NEJM197111182852108
  2. Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 1972;48:347-356
  3. Littleton JT, Durizch ML, Moeller G, Herbert DE. Pulmonary masses: contrast enhancement. Radiology 1990;177:861-871 https://doi.org/10.1148/radiology.177.3.2244002
  4. Swensen SJ, Brown LR, Colby TV, Weaver AL, Midthun DE. Lung nodules enhancement at CT: prospective findings. Radiology 1996;201:447-455 https://doi.org/10.1148/radiology.201.2.8888239
  5. Swensen SJ, Brown LR, Colby TV, Weaver AL. Pulmonary nodules: CT evaluation of enhancement with iodinated contrast material. Radiology 1995;194:393-398 https://doi.org/10.1148/radiology.194.2.7824716
  6. Yamashita K, Matsunobe S, Tsuda T, Nemoto T, Matsumoto K, Miki H, et al. Solitary pulmonary nodule: preliminary study of evaluation with incremental dynamic CT. Radiology 1995;194:399-405 https://doi.org/10.1148/radiology.194.2.7824717
  7. Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, et al. Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging--perfusion differences in malignant and benign lesions. Radiology 2004;232:544-553 https://doi.org/10.1148/radiol.2322030515
  8. Zhang M, Kono M. Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 1997;205:471-478 https://doi.org/10.1148/radiology.205.2.9356631
  9. Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, et al. Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 2004;233:191-199 https://doi.org/10.1148/radiol.2331031535
  10. Yamashita K, Matsunobe S, Takahashi R, Tsuda T, Matsumoto K, Miki H, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT: radiologic-pathologic correlation Radiology 1995;196:401-408 https://doi.org/10.1148/radiology.196.2.7617852
  11. Tateishi U, Nishihara H, Watanabe S, Morikawa T, Abe K, Miyasaka K. Tumor angiogenesis and dynamic CT in lung adenocarcinoma: radiologic-pathologic correlation. J Comput Assist Tomogr 2001;25:23-27 https://doi.org/10.1097/00004728-200101000-00004
  12. Semelka RC, Maycher B, Shoenut JP, Kroeker R, Griffin P, Lertzman M. Dynamic Gd-DTPA enhanced breath-hold 1.5 t MRI of normal lungs and patients with interstitial lung disease and pulmonary nodules: preliminary results. Eur RadioI 1992;2:576-582
  13. Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol 1999;30:198-205 https://doi.org/10.1016/S0720-048X(99)00012-1
  14. Fujimoto K, Abe T, Muller NL, Terasaki H, Kato S, Sadohara J, et al. Small peripheral pulmonary carcinomas evaluated with dynamic MR Imaging: correlation with tumor vascularity and prognosis Radiology 2003;227:786-793 https://doi.org/10.1148/radiol.2273020459
  15. Guckel C, Schnabel K, Deimling M, Steinbrich W. Solitary pulmonary nodules: MR evaluation of enhancement patterns with contrast-enhanced snapshot gradient-echo imaging. Radiology 1996;200:681-686 https://doi.org/10.1148/radiology.200.3.8756914
  16. Dvorak HF, Orenstein NS, Carvalho AC, Churchill WH, Dvorak AM, Galli SJ, et al. Induction of fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 1979;122:166-174
  17. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;19:983-985
  18. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-1309 https://doi.org/10.1126/science.2479986
  19. Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo-stellate cells. Proc Natl Acad Sci USA 1989;86:7311-7315 https://doi.org/10.1073/pnas.86.19.7311
  20. Smith-McCune KK, Weidner N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 1994;54:800-804
  21. Berger DP, Herbstritt L, Dengler WA, Marme D, Mertelsmann R, Fiebig HH. Vascular endothelial growth factor [VEGF] mRNA expression in human tumor models of different histologies. Ann OncoI 1995;6:817-25 https://doi.org/10.1093/oxfordjournals.annonc.a059322
  22. Ellis LM, Liu W. Vascular endothelial growth factor [VEGF] expression and alternate splicing in non-metastatic and metastatic human colon cancer cell lines. Proc Am Assoc Cancer Res 1995;36:88
  23. Takahama M , Tsutsumi M, Tsujiuchi T, Kido A, Okajima E, Nezu K, et al. Frequent Expression of the Vascular Endothelial Growth Factor in Human Non-small-cell Lung Cancers. Jpn J Clin Oncol 1998;28:176-181 https://doi.org/10.1093/jjco/28.3.176