EEG Coherence in Controls, Mild Cognitive Impairment and Different Stage of Alzheimer's Disease

정상노인, 경도인지장애와 알쯔하이머병의 단계에 따른 뇌파 Coherence

Kwak, Yong-Tae
곽용태

  • Published : 20060000

Abstract

Background: EEG coherence can be used to evaluate the functional electrical connections between different cortical regions. We compare EEG coherences among younger controls (YC), elderly controls (EC), mild cognitive impairment (MCI), and different stages of Alzheimer's disease (AD) in order to clarify the electrophysiological changes of aging and process of dementia. Methods: The EEGs were recorded in 29 YC, 37 EC, 22 MCI, 11 CDR 0.5, 42 CDR1, 51 CDR2, 53 CDR3 AD patients from 19 electrodes with linked-ears reference. Anterior and posterior intrahemispheric, far interhemispheric, and interhemispheric coherence were calculated in study subjects. Results: Elderly controls showed increased anterior local coherence and decreased posterior local coherence compared to the other groups. This results in diminished posterior-anterior differences compared to that of young controls. Compared to elderly controls, significantly higher far coherence values was noted in the theta, alpha, beta band of MCI, theta, beta band of CDR0.5, beta band of CDR1, CDR2, CDR3. In MCI, the delta band of anterior local coherence was significantly decreased compared to mild to moderate AD, and theta, alpha band of posterior local coherence was significantly increased compared to CDR3 of AD. Conclusions: The coherence changes of controls, MCI and AD is not simple and not specific enough to differentiate the MCI and early AD from the other groups. These complex patterns may reflect the pathophysiological findings of cholinergic change of AD, and we need to increase the understanding of the electrophysiological relationships among aging, MCI and various stages of AD J Korean Neurol Assoc 24(1):38-46, 2006

Keywords

References

  1. Hughes JR, Cayaffa JJ. The EEG in patients at different ages without organic cerebral disease. Electroencephalogr Clin Neurophysiol 1977;42:776-784 https://doi.org/10.1016/0013-4694(77)90231-0
  2. Katz RI, Horowitz GR. Electroencephalogram in the septuagenarian: studies in a normal geriatric population. J Am Geriatr Soc 1982; 30:273-275 https://doi.org/10.1111/j.1532-5415.1982.tb07101.x
  3. Duffy FH, Albert MS, McAnulty G, Garvey AJ. Age related differences in brain electrical activity of healthy subjects. Ann Neurol 1984;16: 430-438 https://doi.org/10.1002/ana.410160403
  4. Soininen H, Riekkinen PJ Sr. EEG in diagnostics and follow-up of Alzheimer's disease. Acta Neurol Scand Suppl 1992;139:36-39
  5. Coben LA, Danzinger W, Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer's type: changes at 1 year and 2.5 years. Electroencephgr clin Neurophysiol 1985,61:101-112 https://doi.org/10.1016/0013-4694(85)91048-X
  6. Coben LA, Danziger WL, Berg L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol 1983:55:372-380 https://doi.org/10.1016/0013-4694(83)90124-4
  7. Penttila M, Partanen JV, Soininen H, Riekkinen PJ. Quantitative analysis of occipital EEG in different stages of Alzheimer's disease. Electroencephalogr Clin Neurophysiol 1985:60:1-6 https://doi.org/10.1016/0013-4694(85)90942-3
  8. Dierks T, Perisic I, Frolich L, Ihl R, Maurer K. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Res 1991;40: 181-194 https://doi.org/10.1016/0165-1781(91)90157-K
  9. Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology 1991;41:1006-1009 https://doi.org/10.1212/WNL.41.7.1006
  10. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 1982;139:1136-1139 https://doi.org/10.1176/ajp.139.9.1136
  11. Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand Suppl 2003;179:52-76
  12. Huang C, Wahlund L, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol 2000;111:1961-1967 https://doi.org/10.1016/S1388-2457(00)00454-5
  13. Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol Aging 2000;21:533-540 https://doi.org/10.1016/S0197-4580(00)00153-6
  14. Grunwald M, Busse F, Hensel A, Kruggel F, Riedel-Heller S, Wolf H, et al. Correlation between cortical theta activity and hippocampal volumes in health, mild cognitive impairment, and mild dementia. J Clin Neurophysiol 2001;18:178-184 https://doi.org/10.1097/00004691-200103000-00010
  15. Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund LO. Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment. Dementia 1996;7:314-323
  16. Sklar B, Hanley J, Simmons WW. An EEG experiment aimed toward identifying dyslexic children. Nature 1972;240:414-416 https://doi.org/10.1038/240038a0
  17. Thatcher RW, Krause PJ, Hrybyk M. Corico-cortical associations and EEG coherence: a two-compartment model. Electroencephgr clin Neurophysiol 1986;64:123-143 https://doi.org/10.1016/0013-4694(86)90107-0
  18. Besthorn C, Forstl H, Geiger-Kabish C, Sattel H, Gasser T, Schreiter-Gasser U. EEG coherence in Alzheimer disease. Electroencephalogr Clin Neurophysiol 1994;90:242-245 https://doi.org/10.1016/0013-4694(94)90095-7
  19. Dunkin JJ, Osato S, Leuchter AF. Relationships between EEG coherence and neuropsychological tests in dementia. Clin Electroencephalogr 1995;26: 47-59 https://doi.org/10.1177/155005949502600107
  20. Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G. EEG coherence in Alzheimer's disease. Electroencephalogr Clin Neurophysiol 1998;106:229-237 https://doi.org/10.1016/S0013-4694(97)00129-6
  21. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985-1992 https://doi.org/10.1001/archneur.58.12.1985
  22. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984;34:939-944 https://doi.org/10.1212/WNL.34.7.939
  23. Kwak YT, Han IW, Bang OY. Changes of quantitative EEG after donepezil treatment in Alzheimer's disease. J Korean Neurol Assoc 2001;19;245-250
  24. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140:566-572 https://doi.org/10.1192/bjp.140.6.566
  25. Kang Y, Na DL, Hahn S. A validity study on the Korean Mini-Mental State Examination(K-MMSE) in dementia patients. J Korean Neurol Assoc 1997;15;300-308
  26. Shaw JC. An introduction to the coherence function and its use in EEG signal analysis. J Med Eng Technol 1981;5:279-288 https://doi.org/10.3109/03091908109009362
  27. Koeda T, Knyazeva M, Njiokiktjien C, Jonkman EJ, De Sonneville L, Vildavsky V. The EEG in acallosal children. Coherence values in the resting state: left hemisphere compensatory mechanism? Electroencephalogr Clin Neurophysiol 1995;95:397-407 https://doi.org/10.1016/0013-4694(95)00171-9
  28. da Silva FH, van Lierop TH, Schrijer CF, van Leeuwen WS. Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 1973;35:627-639 https://doi.org/10.1016/0013-4694(73)90216-2
  29. Tanaka H, Hayashi M, Hori T. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep. Psychiatry Clin Neurosci 1999; 53:155-157 https://doi.org/10.1046/j.1440-1819.1999.00509.x
  30. Thatcher RW, Walker RA, Giudice S. Human cerebral hemispheres develop at different rates and ages. Science 1987;236:1110-1113 https://doi.org/10.1126/science.3576224
  31. Duffy FH, McAnulty GB, Albert MS. Effect of age upon interhemispheric EEG coherence in normal adults. Neurobiol Aging 1996;17:587-599 https://doi.org/10.1016/0197-4580(96)00007-3
  32. Koyama K, Hirasawa H, Okubo Y, Karasawa A. Quantitative EEG correlates of normal aging in the elderly. Clin Electroencephalogr 1997;28:160-165 https://doi.org/10.1177/155005949702800308
  33. Tucker DM, Roth DL, Bair TB. Functional connections among cortical regions: topography of EEG coherence. Electroencephalogr Clin Neurophysiol 1986;63:242-250 https://doi.org/10.1016/0013-4694(86)90092-1
  34. Palmer BW, Boone KB, Lesser IM, Wohl MA. Base rates of 'impaired' neuropsychological test performance among healthy older adults. Arch Clin Neuropsychol 1998;13:503-511
  35. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000;163:495- 529 https://doi.org/10.1006/exnr.2000.7397
  36. Perry EK, Perry RH, Blessed G, Tomlinson BE. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1977;1:189
  37. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 1977;34:247-265 https://doi.org/10.1016/0022-510X(77)90073-9
  38. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. Cholinergic markers in elderly patients with early signs of Alzheimer's disease. JAMA 1999;281:1401-1406 https://doi.org/10.1001/jama.281.15.1401
  39. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. J Comp Neurol 1999;411:693-704 https://doi.org/10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-D
  40. Mufson EJ, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol 1999;158:469-490 https://doi.org/10.1006/exnr.1999.7086