Kinesin Superfamily KIF1Bα Protein Binds to the PDZ Domain of MALS-3

Kinesin superfamily KIF1Bα와 MALS-3의 PDZ 영역간의 결합 규명

Kim, Sang-Jin;Lee, Cheol-Hui;Park, Hye-Yeong;Ye, Seong-Su;Jang, Won-Hui;Lee, Sang-Gyeong;Park, Yeong-Hong;Jeong, Yong-Uk;Seok, Dae-Hyeon
김상진;이철희;박혜영;예성수;장원희;이상경;박영홍;정용욱;석대현

  • Published : 20060000

Abstract

The Kinesin superfamily proteins (KIFs) make up a large superfamily of molecular motors that transport cargo such as vesicles, protein complexes, and organelles. KIF1Bα is a monomeric motor that conveys mitochondria and plays an important role in cellular function. Here, we used the yeast two-hybrid system to identify the proteins that interacts with KIF1Bα and found a specific interaction with the mammalian LIN-7 (MALS)- 3/vertebrate homology of LIN-7 (Veri) and synaptic scaffolding molecule (S-SCAM). MALS-3 protein bound to the tail region of KIF1Bα but not to other kinesin family members in the yeast two-hybrid assay. The “T-X-V” motif at the C-terminal end of KIF1Bα is essential for interaction with MALS-3. In addition, this protein showed specific interactions in the Glutathione S-transferase (GST) pull-down assay. An antibody to MALS-3 specifically coimmunoprecipitated KIF1Bα associated with MALS-3 from mouse brain extracts. These results suggest that MALS-3, as KIF1Bα receptor, is involved in the KIF1Bα-mediated transport.

분자 motor로서 큰 superfamily를 형성하는 Kinesin 단백질은 분비소포, 단백질 복합체, 세포 내 각 소 기관을 운반한다. KIF1Bα는 단량체의 motor 단백질로서 세포 내에서 미토콘드리아를 세포 말단으로 이동시키 는 역할이 밝혀졌다. 본 연구에서 효모 two-hybrid system을 사용하여 KIF1Bα와 결합하는 세포 내의 단백질을 분리하였다. 결과 KIF1Bα와 특이적으로 결합하는 mammalian LIN-7 (MALS)-3/vertebrate homology of LIN-7 (Veri)와 synaptic scaffolding molecule (S-SCAM)을 분리하였다. MALS-3는 KIF1Bα의 C-말단 영역과 결합에 관 여하며 KIF1Bα의 C-말단에 존재하는 “T-X-V”아미노산 배열이 MALS-3와의 결합에 중요하게 관여하였다. 또 한 효모 two-hybrid assay에서 MALS-3는 KIF1Bα와 결합하지만 다른 종류의 KIFs와는 결합하지 않았다. 단백 질간의 결합을 pull-down assay로 확인한 결과 MALS-3는 glutathione S-transferase (GST)와는 결합하지 않으나 GST결합 KIF1Bα와는 결합하였다. 또한 생쥐의 뇌 파쇄 액에 MALS-3 항체로 면역침강을 행하여 KIF1Bα를 확인한 결과 MALS-3와 같이 침강하였다. 이러한 결과들은 KIF1Bα는 MALS-3와 결합하며, MALS-3는 KIF1Bα의 수용체로 세포 내 KIF1Bα의 수송의 매개 단백질로 작용함을 시사한다.

Keywords

References

  1. Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N: Kinesin family in murine central nervous system. J Cell Biol 119: 1287-1296, 1992 https://doi.org/10.1083/jcb.119.5.1287
  2. Borg JP, Straight SW, Kaech SM, de Taddeo-Borg M, Kroon DE, Karnak D, Turner RS, Kim SK, Margolis B: Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem 273: 31633-31636, 1998
  3. Dorner C, Ciossek T, Muller S, Moller PH, Ullrich A, Lammers R: Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 273: 20267-20275, 1998 https://doi.org/10.1074/jbc.273.32.20267
  4. Dorner C, Ullrich A, Haring HU, Lammers R: The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J Biol Chem 274: 33654-33660, 1999
  5. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R: Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85: 1067-1076, 1996 https://doi.org/10.1016/S0092-8674(00)81307-0
  6. Goldstein LS: Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci U S A 98: 6999-7003, 2001
  7. Gomperts SN: Clustering membrane proteins: It's all coming together with the PSD-95/SAP90 protein family. Cell 84: 659-662, 1996 https://doi.org/10.1016/S0092-8674(00)81043-0
  8. Griffin JW, Watson DF: Axonal transport in neurological disease. Ann Neurol 23: 3-13, 1988 https://doi.org/10.1002/ana.410230103
  9. Hata Y, Butz S, Sudhof TC: CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16: 2488-2494, 1996 https://doi.org/10.1523/JNEUROSCI.16-08-02488.1996
  10. Hirokawa N: Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519-526, 1998 https://doi.org/10.1126/science.279.5350.519
  11. Jo K, Derin R, Li M, Bredt DS: Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 19: 4189-4199, 1999 https://doi.org/10.1523/JNEUROSCI.19-11-04189.1999
  12. Kamal A, Goldstein LS: Connecting vesicle transport to the cytoskeleton. Curr Opin Cell Biol. 12: 503-508, 2000 https://doi.org/10.1016/S0955-0674(00)00123-X
  13. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N: KIF5C, A novel neuronal kinesin enriched in motor neurons. J Neurosci 20: 6374-6384, 2000 https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  14. Karcher RL, Deacon SW, Gelfand VI: Motor-cargo interactions: the key to transport specificity. Trends Cell Biol 12: 21-27, 2002 https://doi.org/10.1016/S0962-8924(01)02184-5
  15. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N: KIF3A is a new microtubulebased anterograde motor in the nerve axon. J Cell Biol 125: 1095-1107, 1994 https://doi.org/10.1083/jcb.125.5.1095
  16. Miki H, Setou M, Kaneshiro K, Hirokawa N: All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98: 7004-7011, 2001
  17. Misawa H, Kawasaki Y, Mellor J, Sweeney N, Jo K, Nicoll RA, Bredt DS: Contrasting localizations of MALS/LIN-7 PDZ proteins in brain and molecular compensation in knockout mice. J Biol Chem 276: 9264-9272, 2001 https://doi.org/10.1074/jbc.M009334200
  18. Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E: Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci 22: 5253-5258, 2002 https://doi.org/10.1523/JNEUROSCI.22-13-05253.2002
  19. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N: KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79: 1209-1220, 1994 https://doi.org/10.1016/0092-8674(94)90012-4
  20. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N: Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829-837, 1998 https://doi.org/10.1016/S0092-8674(00)81705-5
  21. Okada Y, Higuchi H, Hirokawa: Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424: 574-577, 2003 https://doi.org/10.1038/nature01804
  22. Okada Y, Hirokawa N: A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283: 1152-1157, 1999 https://doi.org/10.1126/science.283.5405.1152
  23. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N: The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81: 769-780, 1995 https://doi.org/10.1016/0092-8674(95)90538-3
  24. Olsen O, Moore KA, Fukata M, Kazuta T, Trinidad JC, Kauer FW, Streuli M, Misawa H, Burlingame AL, Nicoll RA, Bredt DS: Neurotransmitter release regulated by a MALS-liprinalpha presynaptic complex. J Cell Biol 170: 1127-1134, 2005 https://doi.org/10.1083/jcb.200503011
  25. Olsen O, Moore KA, Nicoll RA, Bredt DS: Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex. Curr Opin Cell Biol 18: 223-227, 2006 https://doi.org/10.1016/j.ceb.2006.02.010
  26. Pierce DW, Hom-Booher N, Otsuka AJ, Vale RD: Single-molecule behavior of monomeric and heteromeric kinesins. Biochemistry 38: 5412-5421, 1999 https://doi.org/10.1021/bi9830009
  27. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, Rubinsztein DC, Marchuk DA: A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71: 1189-1194, 2002 https://doi.org/10.1086/344210
  28. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory, Cold Spring Habor, New York, 1989
  29. Scholey JM, Heuser J, Yang JT, Goldstein LS: Identification of globular mechanochemical heads of kinesin. Nature 338: 355-357, 1989 https://doi.org/10.1038/338355a0
  30. Seog DH, Lee DH, Lee SK: Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19: 1-7, 2004 https://doi.org/10.3346/jkms.2004.19.1.1
  31. Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M: Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 273: 15611-15620. 1998 https://doi.org/10.1074/jbc.273.25.15611
  32. Setou M, Nakagawa T, Seog DH, Hirokawa N: Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796-1802, 2000 https://doi.org/10.1126/science.288.5472.1796
  33. Setou M, Seog DH, Y. Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N: Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417: 83-87, 2002 https://doi.org/10.1038/nature743
  34. Sheng M, Sala C: PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24: 1-29, 2001 https://doi.org/10.1146/annurev.neuro.24.1.1
  35. Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N: Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol 148: 1255-1265, 2000 https://doi.org/10.1083/jcb.148.6.1255
  36. Vale RD, Fletterick RJ: The design plan of kinesin motors. Annu Rev Cell Dev Biol 13: 745-777, 1997 https://doi.org/10.1146/annurev.cellbio.13.1.745
  37. Vale RD: The molecular motor toolbox for intracellular transport. Cell 112: 467-480, 2003 https://doi.org/10.1016/S0092-8674(03)00111-9
  38. Yang JT, Laymon RA, Goldstein LS: A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56: 879-889, 1989 https://doi.org/10.1016/0092-8674(89)90692-2
  39. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y, Hirokawa N: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105: 587-597, 2001 https://doi.org/10.1016/S0092-8674(01)00363-4