Nonvolatile Memory Properties of Thin Oxides with Single- and Multi-Layered Si Nanocrystals Obtained by Ion Beam Sputtering

Kim, Seong;Choe, Seok-Ho;Hwang, Hyeong-Seon;Kim, Kyung Joong
김성;최석호;황형선

  • Published : 20060000

Abstract

Single-, double-, and 50- period SiOx/SiO2 have been prepared on Si wafers by ion beam sputtering deposition and subsequently annealed to form Si nanocrystals (NCs) in the SiOx layer. For 50-period SiOx/SiO2 multilayers, the flat-band voltage shift (VFB) of the C-V curves is found to be inversely proportional to the photoluminescence peak wavelength and intensity, which indicates that larger-sized and more dense Si NCs will exhibit a stronger nonvolatile memory. In single-layer devices, a reduction in the tunnel-oxide thickness strongly enhances VFB, and an asymmetry exists between electron and hole storage. The retention time is improved by increasing the thickness of the tunnel oxide rather than the control oxide. The defect states in these devices are considerably reduced by hydrogenation passivation, enhancing VFB in the hole storage. VFB is enhanced on both polarities by reducing the thickness of the center oxide in doubly-stacked devices. A longer retention time is found in the doubly-stacked memory, which seems to result from suppressed charge leakage between the upper NC layer and the substrate due to an energy barrier in the lower NC layer.

Keywords

References

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, Nature 408, 440 (2000) https://doi.org/10.1038/35044012
  2. Jun-Sung Bae, Suk-Ho Choi, Kyung Joong Kim and Dae Won Moon, J. Korean Phys. Soc. 43, 557 (2003)
  3. S. H. Hong, S. Kim, S-H. Choi, K. J. Kim, D. W. Moon, T. D. Kang and H. Lee, J. Korean Phys. Soc. 45, 116 (2004)
  4. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, Appl. Phys. Lett. 80, 661 (2002) https://doi.org/10.1063/1.1433906
  5. K-J. Lee, T-D. Kang, H. Lee, S. H. Hong, S-H. Choi, TY. Seong, K. J. Kim and D. W. Moon, Thin Solid Films 476, 196 (2005) https://doi.org/10.1016/j.tsf.2004.09.037
  6. K. J. Kim, D. W. Moon, S-H. Hong, S-H. Choi, M-S. Yang, J-H. Jhe and J. H. Shin, Thin Solid Films 478, 216 (2005)
  7. B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez- Rodriguez and J. R. Morante, Appl. Phys. Lett. 82, 4818 (2003) https://doi.org/10.1063/1.1587273
  8. D. N. Kouvatsos, V. loannou-Sougleridis and A. G. Nassiopoulou, Appl. Phys. Lett. 82, 397 (2002)
  9. R. Ohba, N. Sugiyama, K. Uchida, J. Koga and A. Toriumi, IEEE Trans. Electron Dev. 49, 1392 (2002) https://doi.org/10.1109/TED.2002.801296
  10. R. F. Steimle, M. Sadd, R. Muralidhar, R. Rao, B. Hradsky, S. Straub and B. E. White, Jr., IEEE Trans. Nanotechnol. 2, 335 (2003) https://doi.org/10.1109/TNANO.2003.820817
  11. Y. H. Kwon, C. J. Park, W. C. Lee, D. J. Fu, Y. Shon, T. W. Kang, C. Y. Hong, H. Y. Cho and K. L. Wang, Appl. Phys. Lett. 80, 2502 (2002) https://doi.org/10.1063/1.1467617
  12. M. Perego, S. Ferrari, M. Fanciulli, G. B. Assayag, C. Bonafos, M. Carrada and A. Claverie, J. Appl. Phys. 95, 257 (2004) https://doi.org/10.1063/1.1629775
  13. K. J. Kim and D. W. Moon, Surf. Interface Anal. 26, 9 (1998) https://doi.org/10.1002/(SICI)1096-9918(199801)26:1<9::AID-SIA341>3.0.CO;2-I
  14. N-M. Park, S-H. Jeon, H-D. Yang, H. Hwang, S-J. Park and S-H. Choi, Appl. Phys. Lett. 83, 1014 (2003) https://doi.org/10.1063/1.1596371
  15. N-M. Park, S-H. Choi and S-J. Park, Appl. Phys. Lett. 81, 1092 (2002) https://doi.org/10.1063/1.1497444
  16. M. Nishida, Phys. Rev. B 70, 113303 (2004) https://doi.org/10.1103/PhysRevB.70.113303