Intraspecific Molecular Phylogeny, Genetic Variation and Phylogeography of Reticulitermes speratus (Isoptera:Rhinotermitidae)

  • Park, Yung Chul (Department of Biology, Dongguk University) ;
  • Kitade, Osamu (Faculty of Science, Ibaraki University) ;
  • Schwarz, Michael (School of Biological Sciences, Flinders University of South Australia) ;
  • Kim, Joo Pil (Department of Biology, Dongguk University) ;
  • Kim, Won (School of Biological Sciences, Seoul National University)
  • Received : 2005.09.01
  • Accepted : 2005.11.20
  • Published : 2006.02.28

Abstract

Population structure was investigated in Reticulitermes speratus populations in the Korean Peninsula and the Japanese Archipelago. All trees derived from analyses of the combined sequence dataset of two mitochondrial genes, COII and COIII, showed that R. speratus populations cluster into two major clades comprising the Korean/southern Japanese populations and the northern Japanese populations. Analysis of population genetic structure showed strong genetic partitioning between populations of the two clades. To understand historical migration routes and current distributions, the phylogeographic history of R. speratus was inferred from intra-/interspecific phylogeny and divergence times estimated between the clades of the phylogenetic tree. The estimated migration route and divergence time of ancestral R. speratus are congruent with recent paleogeographic hypotheses involving land-bridge connections between the Asian continent and the Japanese Archipelago. We suggest that ancestral R. speratus separated into northern and southern Japanese populations after its migration into the Japanese main islands from East China during the early Pleistocene via the East China Sea basin, which may have been exposed during that period. The Korean populations seem to have diverged recently from southern Japanese populations; this may explain the current distribution of R. speratus in the Japanese Arachipelago, and account for why it is restricted to northern areas of the Tokara Strait.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Austin, J. W., Szalanski, A. L., Uva, P., Bagne, A. G., and Kence, A. (2002) A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 753−760 https://doi.org/10.1603/0013-8746(2002)095[0753:ACGAOT]2.0.CO;2
  2. Austin, J. W., Szalanski, A. L., and Cabrera, B. J. (2004) Phylogenetic analysis of the subterranean termite family rhinotermitidae (Isoptera) by using the mitochondrial cytochrome oxidase II gene. Ann. Entomol. Soc. Am. 97, 548−555 https://doi.org/10.1603/0013-8746(2004)097[0548:PAOTST]2.0.CO;2
  3. Ayala, F. J. (1997) Vagaries of the molecular clock. Proc. Natl. Acad. Sci. USA 94, 7776−7783
  4. Brower, A. V. Z. (1994) Rapid morphological radiation and convergence among racees of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. USA 91, 6491−6495
  5. Dobson, M. (1994) Patterns of distribution in Japanese land mammals. Mammal Rev. 24, 91−111 https://doi.org/10.1111/j.1365-2907.1994.tb00137.x
  6. Donovan, S. E., Eggleton, P., Dubbin, W. E., Batchelder, M., and Dibog, L. (2001) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45, 1−11 https://doi.org/10.1078/0031-4056-00063
  7. Entomological Society of Korea (ESK) and Korean Society of Applied Entomology (KSAE) (1994) Check List of Insects from Korea. Konkuk University Press, Seoul
  8. Erixon, P., Svennblad, B., Britton, T., and Oxelman, B. (2003) Reliability of bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 52, 665−673 https://doi.org/10.1080/10635150390235485
  9. Excoffier, L., Smouse, P., and Quattro, J. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 136, 343−359
  10. Gillespie, J. H. (1991) The causes of molecular evolution. Oxford University Press, New York
  11. Goodman, S. J., Tamate, H. B., Wilson, R., Nagata, J., Tatsuzawa, S., et al. (2001) Bottleneck, drift and differentiation: the populations structure and demographic history of sika deer (Cervus Nippon) in the Japanese archipelago. Mol. Ecol. 10, 1357−1370 https://doi.org/10.1046/j.1365-294X.2001.01277.x
  12. Holt, J. A. and Lepage, M. (2000) Termites and soil properties; in Termites: Evolution, Sociality, Symbioses, Ecology, Abe, T., Bignell, D. E., and Higashi, M. (eds.), pp. 389−407, Kluwer Academic Publishing, Netherlands
  13. Huang, F. S., Zhu, S. M., Ping, Z. M., He, X. S., Li, G. X., and Gao, D. R. (2000) Isoptera; in Fauna Sinica, Editorial Committee of Fauna Sinica and Academia Sinica (eds.), Vol. 17, 460−415. Science Press Beijing, China
  14. Huelsenbeck, J. P. and Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754−755 https://doi.org/10.1093/bioinformatics/17.8.754
  15. Jenkins, T. M., Dean, R. E., Verkerk, R., and Forschler, B. T. (2001) Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol. 20, 286−293 https://doi.org/10.1006/mpev.2001.0966
  16. Kato, Y. and Yagi, T. (2004) Biogeography of the subspecies of Parides (Byasa) alcinous (Lepidoptera: Papilionidae) based on a phylogenetic analysis of mitochondrial ND5 sequences. Syst. Entomol. 29, 1−9 https://doi.org/10.1111/j.1365-3113.2004.00238.x
  17. Kimura, M. (1980) A simple method for estimation evolutionary rates of base substitutions through comparative studies of nucleotides sequences. J. Mol. Evol. 16, 111−120 https://doi.org/10.1007/BF01731581
  18. Kimura, M. (1996) Quaternary paleogeography of the Ryukyu Arc. J. Geol. 105, 259−285
  19. Kimura, M. (2000) Paleography of the Ryukyu Islands. Tropics 10, 5−24
  20. Kimura, M., Matsumoto, T., Nakamura, T., Otsuka, H., Nishida, S., et al. (1992) Diving survey of the Kerama Saddle in the eastern margin of the Okinawa Trough: probable sunken land-bridge during the last glacial age. Proceedings of JAMSTEC Symposium of Deep Sea Research 107−133
  21. Kitade, O. and Hayashi, Y. (2002) Localized distribution of an alien termite Reticulitermes kanmonensis (Isoptera: Rhinotermitidae). Entomol. Sci. 5, 197−201
  22. Kizaki, K. and Oshiro, I. (1980) The origin of the Ryukyu Islands; in Natural History of the Ryukyu, Kizaki, K. (ed.), pp. 8−37, Tsukiji-Shokan, Tokyo
  23. Lin, S. M., Chen, C. A., and Lue, K. Y. (2002) Molecular phylogeny and biogeography of the grass lizard genus Takydromus (Reptilia: Lacertidae) of East Asia. Mol. Phylogenet. Evol. 22, 276−288 https://doi.org/10.1006/mpev.2001.1059
  24. Maekawa, K., Miura, T., Kitade, O., and Matsumoto, T. (1998) Genetic variation and molecular phylogeny based on the mitochondrial genes of the damp wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Entomol. Sci. 1, 561−571
  25. Marini, M. and Mantovani, B. (2002) Molecular relationships among European samples of Reticulitermes (Isoptera, Rhinotermitidae). Mol. Phyl. Evol. 22, 454−459 https://doi.org/10.1006/mpev.2001.1068
  26. Masuda, R. (1996) Phylogeny and evolutionary origin of the Iriomote cat and the Tsushima cat, based on DNA analysis. J. Geol. 105, 354−363
  27. Masuda, R. and Yoshida, M. C. (1995) Two Japanese wildcats, the Tsushima cat and the Iriomote cat, show the same mitochondrial lineage as the leopard cat Felis bengalensis. Zool. Sci. 12, 655−659 https://doi.org/10.2108/zsj.12.655
  28. Matsumoto, T., Kimura, M., Nakamura, A., and Aoki, M. (1996) Detailed bathymetric features of Tokara and Kerama Gaps in the Ryukyu Arc. J. Geol. 105, 286−296
  29. Millien, V. (2004) Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J. Biogeo. 31, 1267−1276 https://doi.org/10.1111/j.1365-2699.2004.01119.x
  30. Millien-Parra, V. and Jaeger, J. J. (1999) Island biogeography of the Japanese terrestrial mammal assemblage: an example of a relict fauna. J. Biogeo. 26, 959−972 https://doi.org/10.1046/j.1365-2699.1999.00346.x
  31. Millien-Parra, V. and Loreau, M. (2000) Community composition and size structure of murid rodents in relation to the biogeography of the Japanese archipelago. Ecography 23, 413−423 https://doi.org/10.1034/j.1600-0587.2000.230404.x
  32. Morimoto, K. (1968) Termites of the genus Reticulitermes of Japan and Taiwan. Bull. Gov. Forest. Exp. St. 217, 43−73
  33. Morimoto, K. (1975) Biology of termites in the Far East. Rev. Plant Protect. Res. 8, 29−40
  34. Nei, M. (1987) Molecular evolutionary genetics. Columbia University Press, New York
  35. Neigel, J. E. and Avise, A. C. (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation; in Evolutionary Processes and Theory, Karlin, S. and Nevo, E. (eds.), pp. 515−534, Academic Press, New York
  36. Ohdachi, S., Dokuchaev, N. E., Hasegawa, M., and Masuda, R. (2001) Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Mol. Ecol. 10, 2199−2213 https://doi.org/10.1046/j.1365-294X.2001.01359.x
  37. Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., et al. (2004) Molecular phylogeny of Asian termites (Isoptera) of the families, Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol. Phylogenet. Evol. 31, 701−710 https://doi.org/10.1016/j.ympev.2003.09.009
  38. Ota, H. (1998) Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu archipelago, Japan, with special reference to their paleogeographical implications. Res. Popul. Ecol. 40, 189−204 https://doi.org/10.1007/BF02763404
  39. Ota, H., Honda, M., Chen, S. L., Hikida, T., Panha, S., et al. (2002) Phylogenetic relationships, taxonomy, character evolution and biogeography of the lacertid lizards of the genus Takydromus (Reptilia: Squamata): a molecular perspective. Biol. J. Lin Soc. 76, 493−509 https://doi.org/10.1046/j.1095-8312.2002.00084.x
  40. Pamilo, P. and Nei, M. (1988) Relationships between gene trees and species trees. Mol. Biol. Evol. 5, 568−583
  41. Park, Y. C., Maekawa, K., Matsumoto, T., Santoni, R., and Choe, J. C. (2004) Molecular phylogeny and biogeography of the Korean woodroaches Cryptocercus spp. Mol. Biol. Evol. 30, 450−464
  42. Pearce, M. J. and Waite, B. S. (1994) A list of Termite Genera (Isoptera) with comments on Taxonomic changes and regional distribution. Sociobiology 23, 247−259
  43. Posada, D. and Crandall, K. A. (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14, 817−818 https://doi.org/10.1093/bioinformatics/14.9.817
  44. Rosenberg, N. A. (2002) The probability of topological concordance of gene trees and species trees. Theo. Pop. Biol. 61, 225−247 https://doi.org/10.1006/tpbi.2001.1568
  45. Schneider, S., Roessli, D., and Excoffier, L. (2000) ARLEQUIN version 2.000: a software for genetics data analysis. Genetics and Biometry Laboratory, Dept. of Anthropology, University of Geneva, Switzerland
  46. Schwarz, M. P., Tierney, S. M., Cooper, S. J. B., and Bull, N. J. (2004) Molecular phylogenetics of the allodapine bee genus Braunsapis: A-T bias and heterogeneous substitution parameters. Mol. Phylogenet. Evol. 32, 110−122 https://doi.org/10.1016/j.ympev.2003.11.017
  47. Shapiro, S. S. and Wilk, M. B. (1965) An analysis of variance test for normality (complete samples). Biometrika 52, 591−611
  48. Su, N. Y. (2002) Novel technologies for subterranean termite control. Sociobiology 40, 95−101
  49. Sugimoto, A., Bignell, D. E., and MacDonald, J. A. (2000) Global impact of termites on the carbon cycle and atmospheric trace gases; in Termites: Evolution, Sociality, Symbioses, Ecology, Abe, T., Bignell, D. E., and Higashi, M. (eds.), pp. 409−435, Kluwer, Netherlands
  50. Swofford, D. L. (2001) PAUP$^{\ast}$. Phylogenetic Analysis Using Parsimony ($^{\ast}$and Other Methods). Version 4, Sinauer Associates, Sunderland, MA
  51. Tajima, F. and Nei, M. (1984) Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1, 269−285
  52. Takahashi, K., Chang, C. H., and Cheng, Y. N. (2001) Proboscidean fossils from the Japanese Archipelago and Taiwan Islands and their relationship with the Chinese mainland. The World of Elephants-International Congress, Rome, 148−151
  53. Takematsu, Y. (1999) The genus Reticulitermes (Isoptera: Rhinotermitidae) in Japan, with description of a new species. Entomol. Sci. 2, 231−243
  54. Takematsu, Y. and Yamaoka, R. (1999) Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) in Japan and neighboring countries as chemotaxonomic characters. Appl. Entomol. Zool. 34, 179−188
  55. Templeton, A. R. (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol. Ecol. 10, 779−791 https://doi.org/10.1046/j.1365-294x.2001.01199.x
  56. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The Clustral-windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876−4882 https://doi.org/10.1093/nar/25.24.4876
  57. Toda, M., Nishida, M., Tu, M. C., Hikida, T., and Ota, H. (1999) Genetic variation, phylogeny and biogeography of the pit vipers of the genus Trimeresurus sensu lato (Reptilia: Viperidae) in the subtropical East Asian islands; in Tropical Island Herpetofauna-Origin, Current Diversity, and Conservation, Ota, H. (ed.), pp. 249−270, Elsevier, Amsterdam
  58. UNEP and FAO (2000) Termite biology and management workshop, p. 60, UNEP, Geneva
  59. Vargo, E. L., Husseneder, C., and Grace, J. K. (2003) Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol. 12, 2599−2608 https://doi.org/10.1046/j.1365-294X.2003.01938.x
  60. Wang, J., Masuko, K., Kitade, O., and Matsumoto, J. (1992) Allozyme variation and genetic differentiation of colonies in the damp wood termite Hodotermopsis of Japan and China. Scientific papers of the College of Arts & Sciences University of Tokyo 42, 95−109
  61. Xing, L., Maekawa, K., Miura, T., Kitade, O., and Matsumoto, T. (2001) A reexamination of the taxonomic position of Chinese Heterotermes aculabialis (Isoptera: Rhinotermitidae) based on the mitochondrial Cytochrome oxidase II gene. Entomol. Sci. 4, 53−58
  62. Yasuda, I., Nakasone, Y., Kinjyo, K., and Yaga, S. (2000) Morphology and distribution of termites in Ryukyu Islands and North and South Daito Islands. Jpn. J. Entomol. 3, 139−156
  63. Yoon, S. H. and Kim, W. (2005) Phylogenetic relationships among six vetigastropod subgroups (Mollusca, Gastropoda) based on 18S rDNA sequences. Mol. Cells 19, 283−288
  64. Zhu, B., Fan, S., and Shu, L. (1994) A list of Isoptera in China. Technol. Termites 11, 1−21