Sinigrin Contents in Different Tissues of Wasabi and Antimicrobial Activity of Their Water Extracts

고추냉이 부위별 Sinigrin 함량과 추출액의 항균 활성

Park, Yun-Yeong;Jo, Mun-Su;Park, Sin;Lee, Yeong-Deuk;Jeong, Byoung-Ryong;Jeong, Jong-Bae
박윤영;조문수;박신;이영득;정병룡;정종배

  • Published : 20060000

Abstract

Total sinigrin contents in rhizome, leaf petiole and leaf blade of wasabi (Wasabia japonica) were determined by simultaneous measurement of sinigrin and allyl isothiocyanate using HPLC. The antimicrobial activity of water extracts of the different tissues were also examined against Staphylococcus aureus, Streptococcus agalatiae, Listeria monocytogenes, Escherichia coli and Streptococcus mutans. The contents of total sinigrin including allyl isothiocyanate were 15.22, 1.85, 1.95 mgg-1 in rhizome, leaf petiole and leaf blade of wasabi, respectively. The contents were much higher than those found by other researchers, who determined sinigrin and isothiocyanates by measuring content of allyl isothiocyanate after the conversion of sinigrin to allyl isothiocyanate. During the conversion, the loss of the volatile compound iosthiocyanates and the incomplete conversion of sinigrin to allyl isothiocynate might be possible, and these factors may be related to the differences in the total sinigrin measurements. Water extracts of wasabi rhizome, leaf petiole and leaf blade showed anti-microbial activity against Staphylococcus aureus, Streptococcus agalatiae, Listeria monocytogenes and Escherichia coli, and the highest activity was found in the rhizome extract, where the total sinigrin content was much higher than those found in leaf petiole and leaf blade. Although the contents of sinigrin and isothiocyanates in leaf petiole and leaf blade of wasabi are relatively lower than that in rhizome, the biomass of leaf petiole and leaf blade are greater than that of rhizome and also can be continuously harvested from the same root and rhizome system. Therefore, the aboveground parts of wasabi can be used in the extraction of sinigrin and isothiocyanates as commercial antimicrobial compounds.

고추냉이의 근경, 엽병 그리고 잎 중의 sinigrin 및 allyl isothiocyanate 함량을 HPLC를 이용한 동시분석방법으로 측정하였다. 본 연구에서 측정된 총 sinigrin 함량은 sinigrin을 allyl isothiocyanate로 전환시킨 후 allyl isothiocyanate만을 측정한 기존의 연구 결과에 비하여 근경, 엽병, 잎에서 최소 5.9, 3.9, 1.8배 이상 높았다. 분석에 사용된 고추냉이의 품종이나 재배환경의 차이도 있을 수 있지만 기존의 분석방법에서는 불완전한 sinigrin의 가수분해나 휘발성인 allyl isothiocyanate의 손실로 인해 총 sinigrin 함량을 정확히 측정하지 못한 것으로 판단된다. Staphylococcus aureus, Streptococcus agalatiae, Listeria monocytogenes, Escherichia coli 그리고 Streptococcus mutans에 대한 고추냉이 부위별 추출물의 항균 활성을 조사한 결과를 보면 일부 차이는 있었으나 Streptococcus mutans를 제외한 모든 균에 대하여 생육저해 효과를 나타내었다. 특히 근경 추출물은 24시간까지 지속적으로 이들 미생물의 생육을 저해하였다. 이러한 미생물 생육저해효과는 allyl isothiocyanate를 포함한 각종 isothiocyanate의 함량에 따라서 결정되며, 근경 추출물의 항균효과가 큰 이유는 엽병이나 잎에 비하여 isothiocyanate 화합물의 함량이 높기 때문이다. 고추냉이 추출물의 처리가 Streptococcus mutans의 생육을 억제하지 못한 것은 다른 균에 비하여 isothiocyanate에 대한 Streptococcus mutans의 저항력이 크기 때문이다. 고추냉이의 엽병과 잎 중의 sinigrin 또는 isothiocyanate 화합물의 함량은 근경에 비하여 낮았다. 그러나 sinigrin 또는 isothiocyanate 화합물을 추출하여 상업적으로 활용하는데 있어서는 근경보다 생산량이 많고 지속적으로 채취가 가능한 엽병과 잎이 훨씬 유리할 것으로 판단된다.

Keywords

References

  1. Agrawal, A. and N.S. Kurashige. 2003. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol. 29:1403-1415 https://doi.org/10.1023/A:1024265420375
  2. Bennet, R.N. and R.M. Wallgrove. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127:617-633 https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
  3. Brabban, A.D. and C. Edwards. 1995. The effects of glucosinolates and their hydrolysis products on microbial growth. J. Appl. Bacteriol. 79:171-177 https://doi.org/10.1111/j.1365-2672.1995.tb00931.x
  4. Byeon, H.S., S.J. Heo, S.J. Lim, and J.S. Seo. 2002. Variation of growth and allyl isothiocyanate contents of Wasabia japonica Matsum cultivar. J. Kor. Medicinal Crop Sci. 10:181-184
  5. Chin, H.W. and R.C. Lindsay. 1993. Volatile sulfur compounds formed in disrupted tissues of different cabbage cultivars. J. Food Sci. 58:835-839 https://doi.org/10.1111/j.1365-2621.1993.tb09370.x
  6. Dorsch, W., O. Adam, J. Weber, and T. Ziegeltrum. 1985. Antiasthmatic effects of onion extracts - detection of benzyl and other isothiocyanates (mustard oils) as antiasthmatic compounds of plant origin. Eur. J. Pharmacol. 107:17-25 https://doi.org/10.1016/0014-2999(84)90086-4
  7. Etoh, H., A. Nishimura, R. Takasawa, A. Yagi, K. Saito, K. Sakada, I. Kishima, and K. Ina. 1990. $\omega$-Methylsulphinylalkyl isothiocyanates in wasabi, Wasabia japonica Matsum. Agric. Biol. Chem. 54:1587-1589 https://doi.org/10.1271/bbb1961.54.1587
  8. Fenwick, G.R., R.K. Heaney, and W.J. Mullin. 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 18:123-201 https://doi.org/10.1080/10408398209527361
  9. Fuke, Y., Y. Ohishi, K. Iwashita, H. Ono, and K. Shinohara. 1994. Growth suppression of MKN-28 human stomach cancer cells by wasabi (Eutrema wasabi Maxim.). J. Japan. Soc. Food Sci. Technol. 41:709-711 https://doi.org/10.3136/nskkk1962.41.709
  10. Fuke, Y., Y. Haga, H. Ono, T. Nomura, and K. Ryoyama. 1997. Anti-carcinogenic activity of 6-methylsulfinylhexyl isothiocyanate-, an active anti-proliferative principal of wasabi (Eutrema wasabi Maxim.). Cytotechnol. 25:197-203 https://doi.org/10.1023/A:1007918508115
  11. Hara, M., H. Eto, and T. Kuboi. 2001. Tissue printing for myrosinase activity in roots of turnip and Japanese radish and horseradish; a technique for localizing myrosinase. Plant Sci. 160:425-431 https://doi.org/10.1016/S0168-9452(00)00400-3
  12. Hasegawa, N., Y. Matsumoto, A. Hoshino, and K. Iwashita. 1999. Comparison of effects of Wasabia japonica and allyl isothiocyanate on the growth of four strains of Vibrio parahaemolyticus in lean and fatty tuna meat suspensions. Int. J. Food Microbiol. 49:27-34 https://doi.org/10.1016/S0168-1605(99)00043-4
  13. Ina, K., H. Ina, M. Ueda, A. Yagi, and I. Kishima. 1989. $\omega$ -Methylsulphinylalkyl isothiocyanates in wasabi. Agric. Biol. Chem. 52:537-538
  14. Johnson, I., G. Williams, and S. Musk. 1994. Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr. Res. Rev. 7:175-204 https://doi.org/10.1079/NRR19940011
  15. Kim, J.K., M.S. Cha, J.K. Bang, B.K. Lee, and C.B. Park. 2001. Flavor and antibacterial activity of the volatile components of wasabi (Wasabia japonica) and horseradish (Armoracia rusticana). Treat. Crop Res. 2:233-239
  16. Ko, K.S. and U.S. Jun. 2003. Ferns, fern-allies and seed-bearing plants of Korea. p. 252. Iljinsa, Seoul, Korea
  17. Kojima, M., H. Hamada, and M. Yamashita. 1982. Studies on the evaluation of quality of Japanese horseradish (wasabi) powder by gas chromatography. XI. Studies on the stability of dried wasabi powder. J. Japan. Soc. Food Sci. Technol. 29:232-237 https://doi.org/10.3136/nskkk1962.29.4_232
  18. Kumagai, H., N. Kashima, T. Seki, H. Sacurai, K. Ishii, and T. Ariga. 1994. Analysis of volatile compositions in essential oil of upland wasabi and their inhibitory effects on platelet aggregation. Biosci. Biotechnol. Biochem. 58:2131-2135 https://doi.org/10.1271/bbb.58.2131
  19. Kyung, K.H. and H.P. Fleming. 1997. Antimicrobial activity of sulfur compounds derived from cabbage. J. Food Protect. 60:67-71 https://doi.org/10.4315/0362-028X-60.1.67
  20. Lee, S,W., J.S. Seo, S.D. Kim, Y.H. Kim, S.N. Yu, and D.Y. Kim. 1997. Allyl isothiocyanate content in different plant parts of Wasabia japonica Mastum. J. Kor. Crop Sci. 42:281-285
  21. Lee, Y.D, C.H. Kwon, M.S. Cho, J.B. Chung, S. Park, and B.R. Jeong. 2003. Simultaneous determination of sinigrin and allyl isothiocyanate in wasabi (Wasabia japonica) using ion-pair liquid chromatography. International Symposium and Annual Meeting of the KSACB. 100-105
  22. Lund, E.K., T.K. Smith, R.G. Clarke, and I.T. Johnson. 2001. Cell death in the colorectal cancer cell line HT29 in response to glucosinolate metabolites. J. Sci. Food Agric. 81:959-961 https://doi.org/10.1002/jsfa.904
  23. Masuda, H. 2000. Wasabi as functional food: An overview. 2000 International Chemical Congress of Pacific Basin Societies. December 14-19. Honolulu, Hawaii, USA
  24. McGregor, D.I., W.J. Mullin, and G.R. fenwick. 1983. Analytical methodology for determining glucosinolate composition and content. J. AOAC 66:825-849
  25. Morimitsu, Y., K. hayashi, Y. Nakagawa, H. Fujii, F. Horio, K. Uchida, and T. Osawa. 2000. Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, Wasabi. Mech. Ageing Dev. 116:125-134 https://doi.org/10.1016/S0047-6374(00)00114-7
  26. Nomura, T., S. Shinoda, T. Yamori, S. Sawaki, I. Nagata, K. Ryoyama, and Y. Fuke. 2005. Selective sensitivity to wasabi-derived 6-(methlysulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro. Cancer Detect. Prev. 29:155-160 https://doi.org/10.1016/j.cdp.2004.07.010
  27. Ohta, Y., K. Takatami, and S. Kawakish. 1995. Decomposition rate of allyl isothiocyanate in aqueous solution. Biosci. Biotechnol. Biochem. 59:102-103 https://doi.org/10.1271/bbb.59.102
  28. Ono, H., S. Tesaki, S. Tanabe, and M. Watanabe. 1998. 6-Methylsulphinylhexyl isothiocyanate and its homologues as food-originated compounds with antibacterial activity against Escherichis coli and Staphylococcus aureus. Biosci. Biotechnol. Biochem. 62:363-365 https://doi.org/10.1271/bbb.62.363
  29. Park, D.H., G.T. Jeong, S.W. Yang, B. Hwang, J.H. Rhee, and Y.I. Joe. 2001. On the study of useful secondary metabolites using plant hairy root cultures - Effects of antimicrobial and disinfectant activity of allylisothiocyanate. J. Kor. Biotechnol. Bioeng. 16:360-364
  30. Sahasrabudhe, M.R. and W.J. Mullin. 1980. Dehydration of horseradish roots. J. Food Sci. 45:1440-1443 https://doi.org/10.1111/j.1365-2621.1980.tb06577.x
  31. Shin, I,.S., H. Masuda and K. Naohide. 2004. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food. Microbiol. 94:255-261 https://doi.org/10.1016/S0168-1605(03)00297-6
  32. Seo, K.L., D.Y. Kim, and S.I. Yang. 1995. Studies on the antimicrobial effect of wasabi extracts. J. Kor. Nutrition 28:1073-1077
  33. Smith, T.K., R. Mithen, and I.T. Johnson. 2003. Effects of Brassica vegetables juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24:491-495 https://doi.org/10.1093/carcin/24.3.491
  34. Soledade, M., C. Pedras, and J.L. Sorensen. 1998. Phytoalexin accumulation and antifungal compounds from the crucifer wasabi. Pytochem. 49:1959-1965 https://doi.org/10.1016/S0031-9422(98)00424-5
  35. Sultana, T., G.P. Savage, D.L. Mcneil, N.G. Porter, R.J. Martin, and B. Deo. 2002. Effects of fertilisation on the allyl isothiocyanate profile of above-ground tissues of New Zealand- grown wasabi. J. Sci. Food. Agric. 82:1477-1482 https://doi.org/10.1002/jsfa.1218
  36. Sultana, T., D.L. Mcneil, N.G. Porter, and G.P. Savage. 2003. Investigation of isothiocyanate yield from flowering and non-flowering tissues of wasabi grown in a flooded system. J. Food Compos. Anal. 16:637-646 https://doi.org/10.1016/S0889-1575(03)00094-2
  37. Shin, I.S., H. Masuda, and K. Naohide. 2004. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food Microbiol. 94:255-261 https://doi.org/10.1016/S0168-1605(03)00297-6
  38. Uda, Y., T. Kurata, and N. Arakawa. 1986. Effects of pH and ferrous ion on the degradation of glucosinolates by myrosinase. Agric. Biol. Chem. 50:2735-2740 https://doi.org/10.1271/bbb1961.50.2735
  39. VanEtten, C.H., M.E. Daxenbichler, P.H. Williams, and W.F. Kwolek. 1976. Glucosinolates and derived products in Crusiferous vegetables. Analysis of the edible part from twenty-two varieties of cabbage. J. Agric. Food Chem. 24:452-455 https://doi.org/10.1021/jf60205a049
  40. Watanabe, M., M. Ohata, S. hayakawa, M. Isemura, S. Kumazawa, T. nakayama, M. Furugori, and N. Kinae. 2003. Identification of 6-methylsulfinylhexyl isothiocyanate as an apoptosis-inducing component in wasabi. Phytochem. 62:733-739 https://doi.org/10.1016/S0031-9422(02)00613-1
  41. Yu, E.Y., I.J. Pickering, G.N. George, and R.C. Prince. 2001. In situ observation of the generation of isothiocyanates from sinigrin in horseradish and wasabi. Biochim. Biophys. Acta 1527:156-160 https://doi.org/10.1016/S0304-4165(01)00161-1