Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in the Sediments of Kwangyang Bay in Korea

광양만 연안 퇴적토 중의 다환방향족탄화수소류의 분포특성

  • Chung, Hung-Ho (Department of Chemical System Engineering Program, Chonnam National University) ;
  • Jeong, Ho-Seung (Department of Chemical System Engineering Program, Chonnam National University) ;
  • Choi, Sang-Won (Department of Chemical System Engineering Program, Chonnam National University)
  • 정흥호 (전남대학교 공과대학 화학시스템공학전공) ;
  • 정호승 (전남대학교 공과대학 화학시스템공학전공) ;
  • 최상원 (전남대학교 공과대학 화학시스템공학전공)
  • Received : 2006.02.09
  • Accepted : 2006.03.06
  • Published : 2006.04.10

Abstract

The concentrations of 16 priority PAHs (US EPA standard) were analyzed in the surface sediments obtained from 23 sampling sites near Kwangyang Bay in Korea. There was a local variability in the total PAHs ranged from 0.01 to 171.39 mg/kg, with a mean value of $8.13{\pm}24.8mg/kg$. The major pollution sources of PAHs near Kwanyang Bay were Taeindo, Sueo stream and Wallae stream, whose concentrations were 114.81, 38.37 mg/kg and 19.05 mg/kg, respectively. It showed that PAHs concentrations were increased with the decrease of particle size and with the increase of organic carbon contents in three fractioned sediments. From the analysis of PAHs source using LMW/HMW, Phe/Ant, and Fla/Pyr, pyrolysis by-products were mostly showed in Kwangyang Bay and some place showed the mixure of pyrolysis by-products, and crude oil by-products. Besides, the toxic effects assessment on benthic ecosystem for three major pollution sources showed that the PAHs concentration of Taindo which was mainly accumulated with carcinogenic PAHs exceeds ERM value and the PAHs of Sueo and Wallae streams are the degree of ERL value.

광양만 연안 표면 퇴적토를 대상으로 미국 EPA가 선정한 유해성 우선물질 16종 PAHs 화합물에 대한 특성 및 모니터링 조사를 수행하였다. 선정된 23개 지점에 대한 PAHs 조사결과 농도 수준은 최소 0.01에서 최고 171.39 mg/kg 수준이었으며, 평균값은 $8.13{\pm}24.8mg/kg$ 이었다. 광양만 PAHs의 주요 유입원은 광양제철 옆 태인도, 수어천, 그리고 여수산업단지 내의 월래천이었으며, 오염수준은 각각 114.81 mg/kg, 38.37 mg/kg, 19.05 mg/kg로 측정되었다. 또한, 세부분으로 나뉜 퇴적토 입자크기에 따른 PAHs 분석결과 입자크기가 작고 퇴적토 내 유기물함량과의 관계에서는 함량이 높을수록 PAHs의 오염도도 증가하는 양의 상관관계를 보였다. LMW/HMW, Phe/Ant, Fle/Pyr PAHs 농도비를 이용한 PAHs 발생원에 대한 연구 결과는 광양만 전역에서 열분해 산물의 특성을 나타냈고, 일부 지역에서 열분해 산물과 유류산물의 혼합된 구성형태를 관찰할 수 있었다. 이외에 광양만 PAHs 고정 유입원으로 보이는 세 지점에대한 저서생태계에 미치는 독성영향평가에서는 발암가능성이 높은 PAHs가 주로 축척된 태인도가 ERM 수준이상으로 나타났고, 수어천과 월래천은 ERL 수준이었다.

Keywords

References

  1. L. S. Birnbaum, Environ. Health Perspect, 102, 676 (1994) https://doi.org/10.2307/3432197
  2. http://www.pops.int
  3. J. Guinan, M. Charlesworth, M. Service, and T. Oliver, Marine Pollution Bulletin, 42, 1073 (2001) https://doi.org/10.1016/S0025-326X(01)00077-7
  4. J. M. Neff, Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Sources, Fate and Biological Effects, Applie Science Publishers, London (1979)
  5. U. H. Yim, S. H. Hong, W. J. Shim, J. R. Oh, and M. Chang, Marine Pollution Bulletin, 50, 319 (2005) https://doi.org/10.1016/j.marpolbul.2004.11.003
  6. C. H. Koh, G. B. Kim, K. A. Maruya, J. W. Anderson, J. M. Jones, and S. G. Kang, Environmental Pollution, 111, 437 (2001) https://doi.org/10.1016/S0269-7491(00)00087-7
  7. G. B. Kim, K. A. Maruya, R. F. Lee, J. H. Lee, C. H. Koh, and S. Tanabe, Marine Pollution Bulletin, 38, 7 (1999) https://doi.org/10.1016/S0025-326X(98)00077-0
  8. J. J. Nam, B. H. Song, K. C. Eom, S. H. Lee, and A. Smith, Chemosphere, 50, 1281 (2003) https://doi.org/10.1016/S0045-6535(02)00764-6
  9. H. H. Chung, H. S. Jeong, E. Y. Kim, H. I. Cho, J. C. Hwang, S. W. Choi, J. of the Environmental Sciences, 13, 543 (2004) https://doi.org/10.5322/JES.2004.13.6.543
  10. S. W. Karickhoff, D. S. Brown, and T. A. Scott, Water Research, 13, 241 (1997) https://doi.org/10.1016/0043-1354(79)90201-X
  11. J. C. Means, S. G. Wood, J. J. Hassett, and W. L. Banwart, Environmental Science and Technology, 14, 1524 (1980) https://doi.org/10.1021/es60172a005
  12. K. A. Maruya, R. W. Risebrough, and A. J. Horne, Environmental Science and Technology, 30, 2942 (1996) https://doi.org/10.1021/es950909v
  13. F. G. Prahl and R. Carpenter, Geochimica et Cosmochimica, 47, 1013 (1983) https://doi.org/10.1016/0016-7037(83)90231-4
  14. C. D. Simpson, C. F. Harrington, and W. R. Cullen, Environmental Science and Technology, 32, 3266 (1998) https://doi.org/10.1021/es970419y
  15. S. Kleineidam, H. Rugner, B. Ligouis, and P. Grathwohl, Evironmental Science and Technology, 33, 1637 (1999) https://doi.org/10.1021/es9806635
  16. E. Magi, R. Bianco, C Ianni, and M. D. Carro, Environmental Pollution, 119, 91 (2002) https://doi.org/10.1016/S0269-7491(01)00321-9
  17. M. Letellier and H. buzinsky, Analyst, 124, 5 (1999) https://doi.org/10.1039/a807482h
  18. K. M. Evans, R. A. Gill, and P. W. Robotham, Water, Air and Soil Pollution, 51, 13 (1990) https://doi.org/10.1007/BF00211500
  19. M. J. Ahrens and C. V. Depree, Marine Pollution Bulletin, 48, 341 (2004) https://doi.org/10.1016/j.marpolbul.2003.08.013
  20. H. H. Soclo, P. Garrigues, and M. Ewald, Marine Pollution Bulletin, 40, 387 (2000) https://doi.org/10.1016/S0025-326X(99)00200-3
  21. A. A. Olajire, R. Altenburger, E. Küster, and W. Brack, Science of The Total Environment, 340, 123 (2004) https://doi.org/10.1016/j.scitotenv.2004.08.014
  22. E. R. Long, D. D. MacDonald, S. L. Smith, and F. D. Calder, Environmental Management, 19, 81 (1995) https://doi.org/10.1007/BF02472006
  23. R. C. Swartz, Environmental Toxicology and Chemistry, 18, 780 (1990) https://doi.org/10.1002/etc.5620180426