Study on the Synthsis and Characteristics of Lipophilic Derivatives of β-Sitosterol

β-시토스테롤의 지용성 치환체의 합성 및 특성에 관한 연구

  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Cho, Young Tai (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 정대원 (수원대학교 공과대학 신소재공학과) ;
  • 조영태 (수원대학교 공과대학 신소재공학과)
  • Received : 2006.03.09
  • Accepted : 2006.06.23
  • Published : 2006.08.10

Abstract

In the paper, lipophilic derivatives of $\beta$-sitosterol, which are known to have a potential to reduce blood cholesterol level, were synthesized by the esterification of $\beta$-sitosterol and fatty acids. When the esterification reactions using stearic acid, oleic acid or linoleic acid as fatty acids were carried out in the presence of an acidic catalyst, the reaction for unsaturated fatty acids such as oleic acid and linoleic acid afforded a significant amount of side products which may be produced by oxidation of unsaturated groups. On the other hand, esterification reactions in the presence of dehydrating agents and a basic catalyst gave pure products regardless of the nature of fatty acids. The solubilities of lipophilic derivatives of $\beta$-sitostero to organic solvents and edible oil were observed to increase as the degree of unsaturation of fatty acids increases.

본 연구에서는 혈중 콜레스테롤 저하 효과가 알려져 있는 $\beta$-시토스테롤과 지방산과의 에스테르화 반응에 의하여 $\beta$-시토스테롤의 지용성 치환체를 합성하였다. 지방산으로 스테아린산, 올레인산 및 리놀레산을 사용하여 산 촉매 존재 하에서 에스테르화 반응을 수행하였을 때, 불포화지방산인 올레인산 및 리놀레산의 경우에는 불포화기의 산화에 기인하는 것으로 판단되는 부산물이 생성되었다. 반면에 탈수제 및 염기성 촉매의 존재 하에서는 불포화지방산의 경우에도 원하는 치환체를 순수한 형태로 합성할 수 있었다. 생성된 $\beta$-시토스테롤의 지용성 치환체의 유기용매 및 식용유에 대한 용해도는 사용된 지방산의 불포화도가 높을수록 높은 것으로 나타났다.

Keywords

References

  1. I. Ikeda, K. Tanaka, M. Sugano, G. V. Vahouny, and L. L. Gallo J. Lipid Res., 70, 5 (1999)
  2. D. J. Ormrod, C. C. Holmes, and T. E. Miller, Atherosclerosis, 138, 329 (1998) https://doi.org/10.1016/S0021-9150(98)00045-8
  3. A. S. Sandberg, M. Brune, N. G. Carlsson, L. Hallberg, E. Skoglund, and L. Rossander-Hulthen, Am. J. Clin. Nutr., 70, 22 (1999)
  4. H. V. Scheller, R. L. Doong, B. L. Ridley, and D. Mohnen, Planta, 207, 512 (1999) https://doi.org/10.1007/s004250050511
  5. H. T. Vanhanen and T. A. Miettinen, Clin. Chim. Acta., 205, 97 (1992) https://doi.org/10.1016/S0009-8981(05)80004-X
  6. H. Gylling and T. A. Miettinen, J. Lipid Res., 37, 1776 (1996)
  7. P. J. H. Jones, D. E. MacDougall, F. Ntanios, and C. A. Vanstone, Can. J. Physiol. Pharmacol., 75, 217 (1997) https://doi.org/10.1139/cjpp-75-3-217
  8. A. B. Awad, R. L. Von Hottz, J. P. Cone, C. S. Fink, and Y. C. Chen, Anticancer Res., 18, 471 (1998) https://doi.org/10.1097/CAD.0b013e32801265eb
  9. U. S. patent 6,184,397 (2001)
  10. U. S. patent 6,660,491 (2003)
  11. F. H. Mattson, S. M. Grundy, and J. R. Crouse, Am J. Clin. Nutr. 35, 697 (1982) https://doi.org/10.1093/ajcn/35.4.697
  12. L. Cercaci, M. T. Rodriguez-Estrada, and G. Lercker, J. Chromatogr. A, 985, 211 (2003) https://doi.org/10.1016/S0021-9673(02)01397-3
  13. U. S. patent 5,502,045 (1996)
  14. J. A. Weststrate and G. W. Meijer, Eur. J. Clin. Nutr., 52, 334 (1998) https://doi.org/10.1038/sj.ejcn.1600559
  15. S. P. Mun, E. M. Hassan, and T. H. Yoon, J. Korean Ind. Eng. Chem., 7, 430 (2001)
  16. U. S. patent 6,184,397 (2001)
  17. F. Kaneko, J. Yano, and K. Sato, Curr. Opin. Struct. Biol., 8, 417 (1998) https://doi.org/10.1016/S0959-440X(98)80117-6
  18. R. Adolf and T. Lamm, J. Chromatogr. A, 799, 329 (1998) https://doi.org/10.1016/S0021-9673(97)01056-X
  19. G. Dobson, W. W. Christie, and J. L. Sebedio, Chem. Phys. Lipids, 82, 101 (1996) https://doi.org/10.1016/0009-3084(96)02567-4
  20. Y. J. Kim, J. S. Kim, and K. Y. Choi, J. Korean Ind. Eng. Chem., 7, 400 (2001)
  21. L. A. Paquette, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Chichester (1995)
  22. S. B. Lee, K. A. Park, and I. K. Hong, J. Korean Ind. Eng. Chem., 10, 438 (1999)