Adaptive Mesh Refinement for Thin-Film Equations

Kim, Jun-Seok

  • Published : 20060000

Abstract

An adaptive finite difference method is developed for a class of fully nonlinear time-dependent thin liquid film equations. Equations of the type ht+fy(h) = −3r(M(h)rh) arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, y, t) is the fluid film height. Enhanced accuracy for the method is attained by covering the front with a sequence of nested, progressively finer, rectangular grid patches that dynamically follow the front motion. Results of numerical experiments illustrate the accuracy, the efficiency, and the robustness of the method.

Keywords

References

  1. T. G. Myers, SIAM Rev. 40, 441 (1998) https://doi.org/10.1137/S003614459529284X
  2. C. H. Ho and Y. C. Tai, Annu. Rev. Fluid Mech. 30, 579 (1998) https://doi.org/10.1146/annurev.fluid.30.1.579
  3. D. E.Weidner, L.W. Schwartz and M. H. Eres, J. Colloid Interface Sci. 187, 243 (1997) https://doi.org/10.1006/jcis.1996.4711
  4. J. S. Kim and J. Sur, Commun. Korean Math. Soc. 20, 179 (2005) https://doi.org/10.4134/CKMS.2005.20.1.179
  5. A. L. Bertozzi, A. M¨unch, X. Fanton and A. M. Cazabat, Phys. Rev. Lett. 81, 5169 (1998) https://doi.org/10.1103/PhysRevLett.81.5169
  6. J. Sur, A. L. Bertozzi and R. P. Behringer, Phys. Rev. Lett. 90, 126105 (2003) https://doi.org/10.1103/PhysRevLett.90.126105
  7. A. L. Bertozzi and M. P. Brenner, Phys. Fluids 9, 530 (1997) https://doi.org/10.1063/1.869217
  8. S. M. Troian, E. Herbolzheimer, S. A. Safran and J. F. Joanny, Europhys. Lett. 10, 25 (1989) https://doi.org/10.1209/0295-5075/10/1/005
  9. A. L. Bertozzi, A. Munch and M. Shearer, Physica D 134, 431 (1999) https://doi.org/10.1016/S0167-2789(99)00134-7
  10. C. W. Shu and S. Osher, J. Comp. Phys. 83, 32 (1989) https://doi.org/10.1016/0021-9991(89)90222-2
  11. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell and M. L. Welcome, J. Comp. Phys. 142, 1 (1998) https://doi.org/10.1006/jcph.1998.5890
  12. M. J. Berger and I. Rigoustsos, Technical Report NYU- 501, New York University-CIMS, 1991
  13. U. Trottenberg, C. Oosterlee and A. Schuller, MULTIGRID (Academic Press, U.S.A., 2001), p. 372
  14. S. J. Park, H. T. Lee, J. H. Kim and T. Y. Seong, J. Korean Phys. Soc. 31, 537 (1997)
  15. Y. M. Park, Y. J. Park, K. M. Kim, C. H. Roh, C. K. Hyon and E. K. Kim, J. Korean Phys. Soc. 37, 984 (2000) https://doi.org/10.3938/jkps.37.984
  16. J. H. Seok and J. Y. Kim, J. Korean Phys. Soc. 39, S393 (2001)
  17. M. H. Jung, S. H. Park, K. H. Kim, H. S. Kim, J. H. Chang, D. C. Oh, T. Yao, J. S. Song and H. J. Ko, J. Korean Phys. Soc. 49, 890 (2006)
  18. J. S. Kim and J. S. Kim, J. Korean Phys. Soc. 49, 195 (2006)
  19. S. M. Wise, J. S. Kim and W. C. Johnson, Thin Solid Films 473, 151 (2005) https://doi.org/10.1016/j.tsf.2004.07.075
  20. S. M. Wise, J. S. Lowengrub, J. S. Kim and W. C. Johnson, Superlatt. Microstruc. 36, 293 (2004) https://doi.org/10.1016/j.spmi.2004.08.029
  21. S. M. Wise, J. S. Lowengrub, J. S. Kim, K. Thornton, P. W. Voorhees and W. C. Johnson, Appl. Phys. Lett. 87, 133102-1 (2005) https://doi.org/10.1063/1.2061852