Characterization of Eight Rumex Species by FISH (Fluorescence in situ Hybridization) and 5S rDNA Spacer Sequences

Kim, Su-Yeong;Choe, Hae-Won;Gu, Dal-Hoe;Lee, U-Gyu;Lee, Jun-Gyu;Bang, Jae-Uk
김수영;최해원;구달회;이우규;이준규;방재욱

  • Published : 20060000

Abstract

Using both molecular and cytogenetic methods, we have examined and characterized eight Rumex species distributed throughout the Korean Peninsula. The somatic metaphase chromosomes in the Lapathum group were 2n=6x=60 in three of the species (R. crispus, R. japonicus and R. longifolius), 2n=5x=50 in one species (R. nipponicus), and 2n=4x=40 in two of the species (R. obtusifolius and R. maritinus). In the two dioecious groups, the chromosome numbers were 2n=6x=42 (female) and 43 (male) in R. acetocella, and 2n=2x=14 (female) and 15 (male) in R. acetosa. Using the FISH method, we physically mapped the 5S and 45S rDNA genes on the chromosomes of all the studied species. All of the species, except R. japonicus, possessed four 45S rDNA sites, whereas the 5S rDNA gene sites were variable, ranging between 2 and 8. Polymorphic 5S rDNA sites at the same ploidy level were found among species in the subgenus Lapathum group. Nucleotide sequence analysis revealed that the 5S rDNA spacer also varied between the species, ranging between 308 and 315 bp, except for each 120 bp coding region. FISH and 5S rDNA spacer sequencing were successfully applied to the identification and characterization of the eight Rumex species examined in this study.

Keywords

References

  1. Apples R, Gerlach WL, Dennis ES, Swift H and Peacock WJ (1980) Molecular and chromosome organization of DNA sequence coding for the ribosomal RNAs in Cereals. Chromosoma 78: 293-311 https://doi.org/10.1007/BF00327389
  2. Apples R and Honeycutt (1986) rDNA: evolution over a bilion years. In Dutta SK (ed) DNA systematics. II. Plant DNA. CRC Press, Boca Raton, Florida, USA, pp. 81-125
  3. Barciszewska M, Erdmann VA and Barciszewski J (1994) A new model for the tertiary structure of 5S ribonucleic acid in plants. Plant Mol. Biol. Rep. 12: 116-131 https://doi.org/10.1007/BF02668373
  4. Baum BR, Grant Bailey L, Johnson DA and Agafonov AV (2003) Molecular diversity of the 5S rDNA units in the Elymus dahuricus complex (Poaceae: Triticeae) supports the genomic constitution of St, Y and H haplomes. Can. J. Bot. 81: 1091-1103 https://doi.org/10.1139/b03-102
  5. Benabdelmouna A and Darmency AM (1997) Distribution and chromosomal organization of 18S-5.8S-25S and 5S rDNA in Petunia species. Agronomie (Plant Genet. Breed.) 17: 349-360 https://doi.org/10.1051/agro:19970606
  6. Benabdelmouna A, Abirached-Darmency M and Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor. Appl. Genet. 103: 668-677 https://doi.org/10.1007/s001220100596
  7. Brown GR and Carlson JE (1997) Molecular cytogenetics of the genes encoding 18S-5.8S-26S rRNA and 5S rRNA in two species of spruce (Picea). Theor. Appl. Genet. 95: 1-9 https://doi.org/10.1007/s001220050526
  8. Chiche J, Brown SC, Leclerc JC and Yakovlev SS (2003) Genome size, heterochromatin organization, and ribosomal gene mapping in four species of Ribes. Can. J. Bot. 81: 1049-1057 https://doi.org/10.1139/b03-088
  9. Fukui K, Ohmido N and Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor. Appl. Genet. 87: 893-899
  10. Goldsbrough PB, Ellis THN and Lomonossoff GP (1982) Sequence variation and methylation of the flax 5S RNA genes. Nucleic Acids Res. 10: 4501-4514 https://doi.org/10.1093/nar/10.15.4501
  11. Gottlob-McHugh SG, Levesque M, MacKenzie, Olson M, Yarosh O and Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33: 486-494 https://doi.org/10.1139/g90-072
  12. Grebenstein B, Winterfeld G, Roser M and Hemleben V (2001) Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Agrostideae). Mol. Phyl. Evol. 21: 198-217 https://doi.org/10.1006/mpev.2001.1003
  13. Hemleben V and Werts D (1988) Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata and Matthiola incana). Gene 62: 165-169 https://doi.org/10.1016/0378-1119(88)90591-4
  14. Jiang J and Gill BS (1994) Non isotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37: 717-725 https://doi.org/10.1139/g94-102
  15. Kihara H (1925) Chromosomes of Rumex acetocella L. Bot. Mag. Tokyo 39: 353-360 https://doi.org/10.15281/jplantres1887.39.468_353
  16. Kihara H and Ono T (1925) The sex chromosomes of Rumex acetosa. Zeitz. f. Indk. Abst. U. Vererbl. 39: 1-7 https://doi.org/10.1007/BF01961517
  17. Kihara H and Ono T (1926) Chromosomenzahlen und systematische gruppierung der Rumex-Arten. Zschr. f. Zellf. mikr. Anat. 4: 475-481 https://doi.org/10.1007/BF00391215
  18. Kim SY, Choi HW and Bang JW (2004) Physical mapping of rDNAs using McFISH in Anemarrhena asphodeloides Bunge. Korean J. Med. Crop Sci. 12: 515-518
  19. Kitamura S, Inoue M, Shikazono N and Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor. Appl. Genet. 103: 678-686 https://doi.org/10.1007/s001220100643
  20. Koo DH, Hur YK, Jin DC and Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. winter long) using C-banding and bicolor fluorescence in situ hybridization. Mol. Cell 13: 413-418
  21. Koo DH, Hur YK and Bang JW (2004) Variability of rDNA loci in dioecious Rumex acetosa L. detected by fluorescence in situ hybridization. Korean J. Genet. 26: 9-13
  22. Kuroki Y and Kurita M (1971) Chromocenter number in Rumex acetosa L. Japan J. Genet. 46: 295-300 https://doi.org/10.1266/jjg.46.295
  23. Lee MK, Choi HW and Bang JW (1991) Karyotype and chromosomal polymorphism in Rumex acatosa L. Korean J. Genet. 13: 271-280
  24. Leitch AR, Mosgoller W, Shi M and Heslop-Harrison JS (1992) Different patterns of rDNA organization at interphase in nuclei of wheat and rye. J. Cell Sci. 110: 751-757
  25. Leitch IJ and Heslop-Harrison JS (1993) Physical mapping of four sites of 5S DNA sequences and one site of the ${\alpha}-amylase-2$ gene in barly. Genome 36: 517-523 https://doi.org/10.1139/g93-071
  26. Lengerova M, Vyskot B (2001) Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma 217: 147-153 https://doi.org/10.1007/BF01283395
  27. Love A (1944) Cytogenetic studies on Rumex subgenus Acetocella. Hereditas 30: 1-136 https://doi.org/10.1111/j.1601-5223.1944.tb03303.x
  28. Maluszynska J and Heslop-Harrison JS (1993a) Molecular cytogenetics of the genus Arabidopsis: in situ localization of rDNA sites, chromosome numbers and diversity in centromeric heterochromatin. Ann. Bot. 71: 471-484
  29. Maluszynska J and Heslop-Harrison JS (1993b) Physical mapping of rDNA loci in Brassica species. Genome 36: 774-781 https://doi.org/10.1139/g93-102
  30. Marcon AB, Barros IC and Guerra M (2005) Variation in chromosome numbers, CMA bands and 45S rDNA sites in species of Selaginella (Pteridophyta). Ann. Bot. 95: 271-276 https://doi.org/10.1093/aob/mci022
  31. Melo NF and Guerra M (2003) Variability of the 5S and 45S rDNA site in Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92: 309-316 https://doi.org/10.1093/aob/mcg138
  32. Moscone EA, Matzke MA and Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tabacco. Chromosoma 105: 231-236 https://doi.org/10.1007/BF02528771
  33. Mukai Y, Endo TR and Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat. J. Hered. 81: 290-295 https://doi.org/10.1093/oxfordjournals.jhered.a110991
  34. Mukai Y, Endo TR and Gill BS (1991) Physical mapping of the 18S. 26S rRNA multigene family in common wheat: Identification of a new locus, Chromosoma 100: 71-78 https://doi.org/10.1007/BF00418239
  35. Park YK, Park KC, Park CH and Kim NS (2000) Chromosomal localization and sequence variation of 5S rDNA gene in five Capsicum species. Mol. Cell 10: 18-24 https://doi.org/10.1007/s10059-000-0018-4
  36. Parker JS and Clark MS (1991) Dosage sex-chromosome systems in plants. Plant Sci. 80: 79-92 https://doi.org/10.1016/0168-9452(91)90274-C
  37. Parker JS and Wilby AS (1989) Extreme chromosomal heterogenety in a small-island population of Rumex acetosa. Heredity 62: 133-140 https://doi.org/10.1038/hdy.1989.18
  38. Rayburn AL and Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered. 76: 78-81 https://doi.org/10.1093/oxfordjournals.jhered.a110049
  39. Sambrook J, Fritsch E and Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
  40. Schwarzacher T, Leitch AR, Bennett MD and Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64: 315-324 https://doi.org/10.1093/oxfordjournals.aob.a087847
  41. Scoles GJ, Gill BS, Xin ZY, Clark BC, McIntyre CL, Chapman C and Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions in the Triticeae. Plant Syst. Evol. 160: 015-122
  42. Shibata F, Hizume M and Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108: 266-270 https://doi.org/10.1007/s004120050377
  43. Shibata F, Hizume M and Kuroki Y (2000) Molecular Cytogenetic analysis of supernumerary segment in Rumex acetosa. Genome 43: 391-397 https://doi.org/10.1139/gen-43-2-391
  44. Taketa S, Harrison GE and Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Thear. Appl. Genet. 98: 1-9 https://doi.org/10.1007/s001220051033
  45. Van Campenhout S, Aert R and Volckaert G (1998) Orthologous DNA sequence variation among 5S ribosomal RNA gene pacer sequences on homoeologous chromosomes 1B, 1D and 1R of wheat and rye. Genome 41: 244-255 https://doi.org/10.1139/gen-41-2-244
  46. Venkateswarlu K, Lee SW and Nazar RN (1991) Conserved upstream sequence elements in plant 5S ribosomal RNA-encoding genes. Gene 105: 249-253 https://doi.org/10.1016/0378-1119(91)90158-8
  47. Volkov RA, Zanke C, Panchuk II and Hemleben V (2001) Molecular evolution of 5S rDNA of Solanumspecies (sect. Petota): application for molecular phylogeny and breeding. Thear. Appl .Genet. 103: 1273-1282 https://doi.org/10.1007/s001220100670
  48. Walters J and Erdmann VA (1988) Compilation of 5S rRNA and 5S rDNA gene sequences. Nucleic Acids Res. 16 [Suppl.]: r1-r70 https://doi.org/10.1093/nar/16.1.1
  49. Wilby AS and Parker JS (1987) Population structure of hypervariable Y-chromosomes in Rumex acetosa. Heredity 59: 135-143 https://doi.org/10.1038/hdy.1987.105
  50. Zhang D and Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (paeonia, Paeoniaceae) by fluorescent in situ hybridization: implication for phylogeny and concerted evolution. American J. Bot. 86: 735-740 https://doi.org/10.2307/2656583
  51. Zanke C, Borisjuk N, Ruoss B, Schiide-Rentschler L, Ninnemann H and Hemleben V (1995) A specific oligonucleotide of the 5S rDNA spacer and species-specific elements identify symmetric somatic hybrids between Solanum tubersum and S. pinnatisectum. Theor. Appl. Genet. 90: 720-726