Effect of Water Addition on the Conversion of Dimethyl Ether to Light Olefins over SAPO-34

SAPO-34 촉매상에서 디메틸에테르로부터 경질올레핀 제조 및 물의 첨가 효과

  • Baek, Seung-Chan (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Yun-Jo (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Jun, Ki-Won (New Chemistry Research Division, Korea Research Institute of Chemical Technology)
  • 백승찬 (한국화학연구원 신화학연구단) ;
  • 이윤조 (한국화학연구원 신화학연구단) ;
  • 전기원 (한국화학연구원 신화학연구단)
  • Received : 2006.05.15
  • Accepted : 2006.07.13
  • Published : 2006.08.31

Abstract

Conversion of DME (dimethyl ether) or methanol to light olefins (ethylene, propylene, butenes) over SAPO-34 were systematically studied, where it was observed that DME was dehydrated to light olefins and partially converted to by-products such as CO and $CO_2$ at various reaction temperatures on the time-on-stream. SAPO-34 catalyst during the DTO (dimetyl ether-to-olefins) reaction was significantly deactivated compared with MTO (methanol-toolefins) reaction. By addition of water to the reaction feed, the yield to light olefins was not only increased, but the life time of the catalyst was also prolonged by the suppression of the coke formation by steam.

SAPO-34 촉매상에서 DME(dimethyl ether) 또는 메탄올로부터 경질 올레핀(에틸렌, 프로필렌, 부텐)을 제조하는 반응을 수행하여, 각각의 올레핀들과 CO, $CO_2$와 같은 부 생성물의 수율을 반응온도와 시간의 흐름에 따라 비교해서 관찰하였다. DME 전환반응은 메탄올 전환반응과 비교하여 볼 때 촉매의 비활성화가 급격히 진행되었다. 물을 첨가할 경우, 올레핀의 수율을 증가와 함께 코크 생성에 의한 촉매의 비활성화가 감소하여 촉매의 수명이 길어짐을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국화학연구원

References

  1. Stocker, M., 'Methanol-to-Hydrocarbons: Catalytic Materials and their Behavior,' Microporous and Mesoporous Materials, 29, 3-48(1999) https://doi.org/10.1016/S1387-1811(98)00319-9
  2. Haw, J. F., Song, W., Marcus, D. M. and Nicholas, J. B., 'The Mechanism of Methanol to Hydrocarbon Catalysis,' Acc. Chem. Res., 36, 317-326(2003) https://doi.org/10.1021/ar020006o
  3. Haw, J. F. and Marcus, D. M., 'Well-defined (Supra)molecular Structures in Zeolite: Methanol-to-Olefin Catalysis,' Topics in Catalysis, 34, 41-48(2005) https://doi.org/10.1007/s11244-005-3798-0
  4. Liu, Z., Sun, C.,Wang, G., Wang, Q. and Cai, G., 'New Progress in R & D of Lower Olefin Synthesis,' Fuel Processing Technology, 62, 161-172(2000) https://doi.org/10.1016/S0378-3820(99)00117-4
  5. Sousa-Aguiar, E. F., Appel, L. G. and Mota, C., 'Natural Gas Chemical Transformations: The Path to Refinig in the Future,' Catal. Today, 101, 3-7(2005) https://doi.org/10.1016/j.cattod.2004.12.003
  6. Djieugoue, M.-A., Prakash, A. M. and Kevan, L., 'Electron Spin Resonance and Electron Spin Echo Modulation Studies on Reducibility, Location, and Adsorbate Interations of Ni(I) in Ni(II)-Exchanged SAPO-34,' J. Phys. Chem. B, 102, 4386-4391(1998) https://doi.org/10.1021/jp981037x
  7. Prakash, A. M. and Unnikrishnan, S., 'Synthesis of SAPO-34: High Silicon Incorporation in the Presence of Morpholine as Template,' J. Chem. Soc. Faraday Trans., 90(15), 2291-2296(1994) https://doi.org/10.1039/ft9949002291
  8. Dessau, R. M., 'On the H-ZSM-5 Catalyzed Formation of Ethylene from Methanol or Higher Olefins,' J. Catal., 99, 111-116 (1986) https://doi.org/10.1016/0021-9517(86)90204-6
  9. Wu, X. and Anthony, R. G., 'Effect of Feed Composition on Methanol Conversion to Light Olefins over SAPO-34,' Appl. Catal. A, 218, 241-250(2001) https://doi.org/10.1016/S0926-860X(01)00651-2
  10. Marchi, A. J. and Froment, G. F., 'Catalytic Conversion of Methanol into Light Alkenes on Mordenite-like Zeolites,' Appl. Catal., 94, 91-106(1993) https://doi.org/10.1016/0926-860X(93)80048-U