Superexchange Interactions of In3+- Substituted CoFe2O4

Kim, Chul Sung;Kim, Sam Jin;Lee, Seung Wha;An, Sung Yong

  • Published : 20060000

Abstract

Polycrystalline samples of CoFe2.xInxO4 (0 x 0.5) ferrite were prepared by slow cooling and studied using M¨ossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometry( VSM). The crystals were found to have a cubic spinel structure. The lattice parameter (a0) increased linearly with increasing In concentration x. The M¨ossbauer spectra of CoFe2.xInxO4 were measured at various temperatures from 17 to 825 K. The isomer shifts indicated that the valence states of the irons at both tetrahedral (A) and octahedral (B) sites were in ferric high-spin states. The N´eel temperature of CoFe1.9In0.1O4 was TN = 765 ± 3 K. The Debye temperatures for the A and the B sites of CoFe1.9In0.1O4 were found to be A = 664 ± 5 K and B = 207 ± 5 K, respectively. The temperature dependences of the magnetic hyperfine fields at 57Fe nuclei at the tetrahedral (A) and the octahedral (B) sites were analyzed by using the N´eel theory of ferrimagnetism. The intrasublattice A-O-B and the intersublattice A-O-A superexchange interactions of CoFe1.9In0.1O4 were found to be antiferromagnetic with strengths of JA.B = .14.7 kB and JA.A = .3.6 kB, respectively, while intrasublattice B-O-B superexchange interaction was ferromagnetic with a strength of JB.B = 7.4 kB. The VSM data showed that the saturation magnetization decreased with increasing x from about 83.7 emu/g for x = 0.1 to 63.6 emu/g for x = 0.5.

Keywords

References

  1. T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamura, J. Magn. Soc. Jpn. 20, 305 (1996) https://doi.org/10.3379/jmsjmag.20.305
  2. F. X. Cheng, J. T. Jia, Z. G. Xu, B. Zhou C. S. Liao, C. H. Yan, L. Y. Chen and H. B. Zhao, J. Appl. Phys. 86, 2727 (1999) https://doi.org/10.1063/1.371117
  3. M. R. De Guire, R. C. O. Handley and G. Kalonji, J. Appl. Phys. 65, 3167 (1989) https://doi.org/10.1063/1.342667
  4. K. Haneda and A. H. Morrish, J. Appl. Phys. 63, 4258 (1988) https://doi.org/10.1063/1.340197
  5. S. J. Kim, B. R. Myoung and C. S. Kim, J. Appl. Phys. 93, 7054 (2003)
  6. S. W. Lee. D. H. Kim, S. R. Hong, S. J. Kim, W. C. Kim, S. B. Kim and C. S. Kim, IEEE Trans. Mag. 35, 3418 (1999) https://doi.org/10.1109/20.800543
  7. C. S. Kim, S. W. Lee and S. Y. An, J. Appl. Phys. 87, 6244 (2000) https://doi.org/10.1063/1.372668
  8. S. J. Kim, B. S. Son and C. S. Kim, J. Korean Phys. Soc. 45, 675 (2004)
  9. J. B. Nelson and D. P. Riley, Proc. Phys. Soc. 57, 160 (1945) https://doi.org/10.1088/0959-5309/57/3/302
  10. S. H. Yoon and C. S. Kim, J. Korean Phys. Soc. 44, 369 (2004)
  11. S. Y. An, I. B. Shim and C. S. Kim, J. Magn. Magn. Mater. 290, 1551 (2005) https://doi.org/10.1016/j.jmmm.2004.11.244
  12. H. N. Oak, K. S. Baek and S. J. Kim, Phys. Stat. Sol. B 208, 249 (1998) https://doi.org/10.1002/(SICI)1521-3951(199807)208:1<249::AID-PSSB249>3.0.CO;2-B
  13. S. J. Kim, K. D. Jung and C. S. Kim, Hyperfine Interactions 156-157, 113 (2004) https://doi.org/10.1023/B:HYPE.0000043234.27231.2d
  14. H. N. Oak, K. S. Baek, H. Choi and C. S. Kim, J. Korean Phys. Soc. 24, 255 (1991)
  15. D. S. McClure, J. Phys. Chem. Solids 3, 311 (1957) https://doi.org/10.1016/0022-3697(57)90034-3
  16. R. L. Mossbauer and W. H. Wiedermann, Z. Phys. 159, 33 (1960) https://doi.org/10.1007/BF01338458
  17. S. W. Lee, S. I. Park, S. B. Kim, C. S. Kim and H. N. Ok, J. Korean Phys. Soc. 31, 504 (1997)
  18. C. S. Kim, S. W. Lee, S. I. Park, J. Y. Park and Y. J. Oh, J. Appl. Phys. 79, 5428 (1996) https://doi.org/10.1063/1.362328
  19. S. Y. An, S. W. Lee, S. J. Kim and C. S. Kim, Scripta Mater. 44, 1457 (2001) https://doi.org/10.1016/S1359-6462(01)00847-8