Alteration of Antioxidative System to Chilling Stress in Two Weedy Rice (Oryza sativa L.) Germplasms Contrasting in Sensitivity

감수성이 서로 다른 두 잡초벼 계통에서 저온 스트레스에 대한 항산화계의 변화

Son, Yeong-Geol;Lee, Jeung-Ju;Lee, Yeong-Han;Ha, Jeong-Gi;Nam, Jin-Seon
손영걸;이증주;이영한;하정기;남진선

  • Published : 20060000

Abstract

We conducted the physiological comparisons to improve understanding of chilling- tolerant mechanisms in the two weedy rice (Oryza sativa L.) germplasms differing in sensitivity, the one (Dalseong-aengmi 44) is tolerant but the other one (Hwaseong-aengmi 4) is sensitivity to chilling. The leaves of Dalseong-aengmi 44 was curled and dehydrated partly by chilling stress, but the damage of Hwaseong-aengmi 4 was little. Under chilling stress, reduction of water content and increase of lipid peroxidation in Dalseong-aengmi 44 were notable more than in Hwaseong- aengmi 4. The negative correlation between shoot proline levels and chilling-tolerance was more evident in Dalseong-aengmi 44. This expreimental evidence indicated that their capacity to accumulate proline under chilling stress was not an indicator of chilling-tolerance, but merely a consequence or a symptom of the stress. The constitutive and chilling-induced activities of antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase were higher in Hwaseong-aengmi 4 than in Dalseong-aengmi 44. These results suggested that the tolerance to chilling stress in weedy rice is well associated with the constitutive and enhanced capacity of antioxidative enzyme system.

본 연구는 저온 스트레스에 대한 반응성이 서로 다른 잡초성벼의 내한성과 관련된 생리적 요인을 구명하기 위한 연구의 일환으로 수행되었다. 저온 감수성인 달성앵미 44는 내성인 화성앵미 4에 비해 가시적인 피해 현상이 뚜렷하였으며, 지상부 수분함량의 감소도 보다 현저하게 나타났다. 저온 스트레스에 의한 과산화지질의 생성량도 화성앵미 4보다 달성앵미 44에서 높게 나타났는데, 저온 스트레스의 처리기간이 길어질수록 그 차이는 더 커졌다. 삼투 유기용질인 proline함량은 저온 스트레스 하의 두 잡초성벼에서 현저하게 증가하는 경향이었는데, 화성앵미 4보다 달성앵미 44에서의 증가율이 더 높은 것으로 나타났다. 화성앵미 4는 달성앵미 44보다 30 에서 생육된 경우에 SOD, AP CAT 및 GR의 활성이 더 높은 경향이었으며, 2 의 저온 스트레스 하에서도 각 효소의 활성이 더 높은 수준으로 증가하였다. 특히, 화성앵미 4는 달성앵미 44에 비해 저온처리 72시간과 24시간 후에 SOD와 CAT의 활성이 현저하게 증가하였다.

Keywords

References

  1. 서학수. 2003. 잡초벼 특성조사
  2. 吉田靜夫. 1997. 極限溫度に對する生理応答. 植物細胞工學シり-ズ 11:24-47
  3. Asada, K. 1999. The water-water cycle in chloroplasts : Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physicol. Plant Mol. Biol. 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  4. Bates, L. S., R. P. Waldren and I. D. Teare. 1973. Rapid determination of free proline for waterstress studies. Plant Soil. 39:205-207 https://doi.org/10.1007/BF00018060
  5. Blum, A., and A. Ebercon. 1976. Genotypic responses in sorghum to drought stress. II. Free proline accumulation and drought resistance. Crop Sci. 16:428-431 https://doi.org/10.2135/cropsci1976.0011183X001600030030x
  6. Blume, D. E., and J. W. McClure. 1980. Developmental effects of Sandoz 6706 on activities of enzymes of phenolic and general metabolism in barley shoots grown in the dark or under low or high intensity light. Plant Physiol. 65:238-234 https://doi.org/10.1104/pp.65.2.238
  7. Bor, M., F. ozdernir and I. Turcan. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of suger beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77-84 https://doi.org/10.1016/S0168-9452(02)00338-2
  8. Bowler, C., M. Van Montagu and D. Inze. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  9. Cakmak, I., and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98: 1222-1227 https://doi.org/10.1104/pp.98.4.1222
  10. Delauney, A. J., and D. P. S. Verma. 1993. Proline biosynthesis and osmoregluation in plants. Plant J. 4:215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  11. Del Longo, O. T., C. A. Gonzalez., G. M. Pastori and V. S. Trippi. 1993. Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol. 34: 1023-1028
  12. Dionisio-Sese, M. L., and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  13. Du, Z., and J. Bramlage. 1992. Modified thiobarbituric acid assay for measuring lipid oxidation in sugarrich plant tissue extracts. J. Agric. Food Chem. 40: 1566-1570 https://doi.org/10.1021/jf00021a018
  14. Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33:73-96 https://doi.org/10.1146/annurev.pp.33.060182.000445
  15. Fadzillah, N. M., V. Gill., B. P. Finch and R. H. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta. 199:552-556
  16. Foyer, C. H., and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplast : a proposed role in ascorbic acid metabolism. Planta. 133:21-25 https://doi.org/10.1007/BF00386001
  17. Hanson, A. D., C. E. Nelsen and E. H. Everson. 1997. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci. 17 :720-726 https://doi.org/10.2135/cropsci1977.0011183X001700050012x
  18. Howarth, C. J., and H. J. Ougham. 1993. Gene expression under temperature stress. New Phytol. 125:1-26 https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
  19. Huang, M., and Z. Guo. 2005. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49:81-84 https://doi.org/10.1007/s00000-005-1084-3
  20. Iannelli, M. A., F. V. Breusegem., M. V. Montagu., D. Inze and A. Massacci. 1999. Tolerance to low temperature and paraquat-mediated oxidative stress in two maize genotype. J. Exp. Bot. 50: 523-532 https://doi.org/10.1093/jexbot/50.333.523
  21. Jiang, M., and J. Zhang. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of relative oxygen species and upregulates the activites of antioxidant enzymes in maize leaves. J. Exp. Bot. 53:2401-2410 https://doi.org/10.1093/jxb/erf090
  22. Kang, H. M., and M. E. Saltveit. 2002. Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and lowvigour cucumber seedling radicles. Plant Cell Environ. 25: 1233-1238 https://doi.org/10.1046/j.1365-3040.2002.00915.x
  23. Kenyon, W. H., and S. O. Duke. 1985. Effects of acifluorfen on endogenous antioxidants and protective enzymes in cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 79:862-866 https://doi.org/10.1104/pp.79.3.862
  24. Liu, J., and J. K. Jhu. 1997. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 114:591-596 https://doi.org/10.1104/pp.114.2.591
  25. McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase. J. Biol. Chem. 244:6049-6055
  26. McCue, K. F., and A. D. Hanson. 1990. Drought and salt tolerance : towards understanding and application. Trends Biotech. 8:358-362 https://doi.org/10.1016/0167-7799(90)90225-M
  27. McNeil, S. D., M. L. Nuccio and A. D. Hanson. 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 120:945-949 https://doi.org/10.1104/pp.120.4.945
  28. Moftah, A. E., and B. E. Michel. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 83:238-240 https://doi.org/10.1104/pp.83.2.238
  29. Morsy, M. R., A. M. Almutairi., J. Gibbons., S. J. Yun and B. G. de los Reyes. 2005. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene. 344:171-180 https://doi.org/10.1016/j.gene.2004.09.033
  30. Morsy, M. R., L. Jouve., J. F. Hausman., L. Hoffmann and J. Mcd. Stewart. 2006. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. in press
  31. Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867-880
  32. Olmes. E., J. A. Hernandez., F. Sevilla and E. Hellin. 1994. Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J. Plant Physiol. 144:594-598 https://doi.org/10.1016/S0176-1617(11)82142-5
  33. Payton, P., R. Webb., D. Kornyeyev., R. Allen and A. S. Holaday. 2001. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J. Exp. Bot. 52:2345-2354 https://doi.org/10.1093/jexbot/52.365.2345
  34. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101:7-12 https://doi.org/10.1104/pp.101.1.7
  35. Shalata, A., and M. Tal. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104:169-174 https://doi.org/10.1034/j.1399-3054.1998.1040204.x
  36. Shen, W., K. Nada and S. Tachibana. 1999. Effect of cold treatment on enzymic and chilling sensitive cucumber cultivars. J. Japan Soc. Hortic. Sci. 68:967-973 https://doi.org/10.2503/jjshs.68.967
  37. Smirnoff, N., and O. J. Cumbes. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochem. 28:1057-1060 https://doi.org/10.1016/0031-9422(89)80182-7
  38. Sohn, Y. G., B. H. Lee, K. Y. Kang and J. J. Lee. 2005. Effects of NaCl stress on germination, antioxidant responses, and proline content in two rice cultivars. J. Plant Biol. 48:201-208 https://doi.org/10.1007/BF03030409
  39. Stewart, G. R., and J. A. Lee. 1974. The role of proline accumulation in halophytes. Planta 120: 279-289 https://doi.org/10.1007/BF00390296