Biodevice Technology

바이오소자 기술

  • Choi, Jeong-Woo (Department of Chemical and Biomolecular Engineering, Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Bum-Hwan (Department of Chemical and Biomolecular Engineering, Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • 최정우 (서강대학교 화공생명공학과, 바이오융합기술학과) ;
  • 이범환 (서강대학교 화공생명공학과, 바이오융합기술학과)
  • Received : 2005.11.24
  • Accepted : 2006.01.03
  • Published : 2006.02.28

Abstract

Biodevices composed of biomolecular layer by mimicking the natural functions of cells and the interaction mechanisms of the constituted biomolecules have been developed in various industrial fields such as medical diagnosis, drug screening, electronic device, bioprocess, and environmental pollution detection. To construct biodevices such as bioelectronic devices (biomolecular diode, bio-information storage device and bioelectroluminescence device), protein chip, DNA chip, and cell chip, biomolecules including DNA, protein, and cells have been used. Fusion technology consisting of immobilization technology of biomolecules, micro/nano-scale patterning, detection technology, and MEMs technology has been used to construct the biodevices. Recently, nanotechnology has been applied to construct nano-biodevices. In this paper, the current technology status of biodevice including its fabrication technology and applications is described and the future development direction is proposed.

생물체를 구성하는 세포의 기능과 구성요소 간 상호작용 메커니즘을 인공적으로 모방하여 바이오물질 박막으로 구성된 바이오소자는 의료 진단, 신약 스크리닝, 전자소자, 생물공정, 환경오염 물질 측정 등 다양한 산업 분야에 응용되고 있다. 단백질, DNA, 바이오색소, 세포 등의 생체물질을 칩 상에 고집적으로 배열하여 구성된 바이오 소자로서 바이오 전자소자(생물분자 광다이오드, 바이오 정보저장소자, 바이오 전기발광 소자), DNA칩, 단백질칩, 및 세포칩 등이 개발되어 오고 있다. 생체물질 고정화 기술, 마이크로 및 나노수준의 패터닝기술, 소자 구성 기술, 바이오 멤스 기술의 융합을 통해 바이오소자는 구현되며, 최근에는 나노기술의 적용에 의하여 나노바이오소자도 구현이 가능하다. 본 논문에서는 현재까지 개발된 다양한 바이오소자의 제작 기술과 응용에 대하여 소개하고 향후의 발전 방향에 대하여 다룬다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O., 'Quantitative Monitoring of Gene-expression Patterns with a Complementary- DNA Microarray,' Science, 270, 467-470(1995) https://doi.org/10.1126/science.270.5235.467
  2. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S. and Fodor, S. P. A., 'Accessing Genetic Information with High Density DNA Arrays,' Science, 274, 610-614(1996) https://doi.org/10.1126/science.274.5287.610
  3. Marshall, E., 'DNA Arrays,' Science, 291, 396-399(2001)
  4. Blaws, A. S. and Reichert, W. M., 'Protein Patterning,' Biomaterials, 19, 595-609(1998) https://doi.org/10.1016/S0142-9612(97)00218-4
  5. MacBeath, G. and Schreiber, S. L., 'Printing Proteins as Microarrays for High-throughput Function Determination,' Science, 289, 1760-1763(2000)
  6. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M., 'Global Analysis of Protein Activities Using Proteome Chips,' Science, 293, 2101-2105(2001) https://doi.org/10.1126/science.1062191
  7. Kukar, T., Eckenrode, S., Gu, Y. R., Lian, W., Megginson, M., She, J. X. and Wu, D. H., 'Protein Microarrays to Detect Protein- Protein Interactions Using Red and Green Fluorescent Proteins,' Anal. Biochem., 306, 50-54(2002) https://doi.org/10.1006/abio.2002.5614
  8. Matsubara, Y., Murakami, Y., Kobayashi, M., Morita, Y. and Tamiya, E., 'Application of On-chip Cell Cultures for the Detection of Allergic Response,' Biosens. Bioelectron., 19, 741-747(2004) https://doi.org/10.1016/j.bios.2003.08.001
  9. Ulleras, E., Trzaska, D., Arkusz, J., Ringerike, T., Adamczewskaa, V., Olszewski, M., Wyczolkowska, J., Walczak-Drzewlecka, A., Al-Nedawi, K., Nilsson, G., Bialek-Wyrzykowska, U., Stepnik, M., Van Loveren, H., Vandebriel, R. J., Lovik, M., Rydzynski, K. and Dastych, J., 'Development of the “Cell Chip': a New in Vitro Alternative Technique for Immunotoxicity Testing,' Toxicology, 206, 245-256(2005) https://doi.org/10.1016/j.tox.2004.08.016
  10. Kavarnos, G. J., 'Fundamentals of photoinduced electron transfer,' VCH. NY, USA, 235-286(1993)
  11. Kuhn, H. and Hong, F. T., 'Molecular Electronics-Biosensors and Biocomputers,' Plenum Press, NY, USA, 3(1993)
  12. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H., 'Structure of the Protein Subunits in the Photosynthetic Reaction Center of Rhodopseudomonas viridis at 3${\AA}$ Resolution,' Nature, 318, 618-624(1985) https://doi.org/10.1038/318618a0
  13. Gust, D. and Moore, T. A., 'Mimicking Photosynthesis,' Science, 244, 35-41(1989) https://doi.org/10.1126/science.244.4900.35
  14. Fujihira, M., Nichiyama, K. and Yamada, H., 'Photoelctrochemical Response of Optically Transparent Electrodes Modified with Langmuir-Blodgett film Consisting of Surfactant Derivatives of Electron Donor, Acceptor and Sensitizer Molecules,' Thin Solid Films, 132, 77-82(1985) https://doi.org/10.1016/0040-6090(85)90459-6
  15. Lvov, Y., 'Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology,' Marcel Dekker, New York, USA, 125(1999)
  16. Choi, H. G., Oh, B. K., Lee, W. H. and Choi, J. W., 'Deposition Behavior and Photoelectrochemical Characteristics of Chlorophyll a Langmuir-Blodgett Films,' Biotechnol. Bioprocess Eng., 6, 183(2001) https://doi.org/10.1007/BF02932548
  17. Isoda, S., Nishikawa, S., Ueyama, S., Hanazato, Y., Kawakubo, H. and Maeda, M., 'Photo-induced Electron Transfer in Molecular Heterojunction Using Flavin-porphyrin Langmuir-Blodgett Multilayers,' Thin Solid Films, 210/211, 290-292(1992) https://doi.org/10.1016/0040-6090(92)90237-6
  18. Sakomura, M., Lin, S., Moore, T. A., Moore, A. L., Gust, D. and Fujihira, M., 'Dynamics of Photoinduced Electron Transfer in an Amphiphilic A2+-S-D Triad Molecule,' J. Phys. Chem. A., 106, 2218(2002) https://doi.org/10.1021/jp012566v
  19. Choi, J. W., Chung, S. W., Oh, S. Y., Lee, W. H. and Shin, D. S., 'Photoinduced Electron Transfer in MIM Device Composed of Ferrocene-flavin-viologen-TCNQ Molecular Heterojunction,' Thin Solid Film, 327, 671-675(1998) https://doi.org/10.1016/S0040-6090(98)00738-X
  20. Fujihira, M., Nichiyama, K. and Yamada, H., 'Photoelctrochemical Response of Optically Transparent Electrodes Modified with Langmuir-Blodgett Film Consisting of Surfactant Derivatives of Electron Donor, Acceptor and Sensitizer Molecules,' Thin Solid Films, 132, 77-82(1985) https://doi.org/10.1016/0040-6090(85)90459-6
  21. Choi, J. W., Nam, Y. S., Lee, W. H., Kim, D. and Fujihira, M., 'Rectified Photocurrent of the Protein-based Bio-photodiode,' Appl. Phys. Lett., 79, 1570-1572(2001) https://doi.org/10.1063/1.1399308
  22. Choi, J. W., Nam, Y. S., Park, S. J., Lee, W. H., Kim, D. and Fujihira, M., 'Rectified Photocurrent of Molecular Photodiode Consisting of Cytochrome c/GFP Hetero Thin Films,' Biosens. Bioelectron., 16, 819-825(2001) https://doi.org/10.1016/S0956-5663(01)00225-1
  23. Lee, B. W., Takeda, S., Nakajima, K., Noh, J. G., Choi, J. W., Hara, M. and Nagamune, T., 'Rectified Photocurrent in a Protein Based Molecular Photo-diode Consisting of a Cytochrome$_{b562}$-Green Fluorescent Protein Chimera,' Biosens. Bioelectron., 19, 1169- 1174(2004) https://doi.org/10.1016/j.bios.2003.11.016
  24. Cui, X. D., Primak, A., Zarate, X., Tomfohr, J., Sankey, O. F., Moore, A. L., Moore, T. A., Gust, D., Harris, G. and Lindsay, S. M., 'Reproducible Measurement of Singlemolecule Conductivity,' Science, 294, 571-573(2001) https://doi.org/10.1126/science.1064354
  25. Khomutov, G. B., Belovolova, L. V., Khanin, V. V., Soldatov, E. S. and Trifonov, A. S., 'STM Investigation of Electron Transport Features in Cytochrome c Langmuir-Blodgett Films,' Colloids Surfaces A, 198/200, 745-752(2002) https://doi.org/10.1016/S0927-7757(01)00996-7
  26. Hopfield, J. J., Onuchic, J. N. and Beratan, D. N., 'Electronic Shift Register Memory Based on Molecular Electron-transfer Reactions,' J. Phys. Chem., 93, 6350(1989) https://doi.org/10.1021/j100354a017
  27. Choi, J. W., Nam, Y. S., Cho, K. S., Park, S., Kim, D. and Lee, W. H., 'Shift Register Memory Function of Molecular Photodiode Consisting of Flavin/viologen/TCNQ Molecular HeteroLB Films,' Mol. Cryst. Liq. Cryst., 371, 403-406(2001) https://doi.org/10.1080/10587250108024769
  28. Hirano, Y., Omata, K., Ishizaki, J., Kawata, J., Miura, Y. F. and Sugi, M., 'Power-law Conductivity in Merocyanine LB Films,' Thin Solid Film, 327/329, 387(1998) https://doi.org/10.1016/S0040-6090(98)00659-2
  29. Saito, K. and Sugi, M., 'Fractal Time Response of Molecular Assemblies and Possible Applications,' 10th Symposium on Future Electronic Devices. October 21-22. Tokyo, Japan(1991)
  30. Sugi, M. and Saito, K., 'Non-integer Exponents in Electronic Circuits II: Memory Effects in the Fractal Immittance,' IEICE Trans. Fund., E77/A, 688(1994)
  31. Choi, J. W., Nam, Y. S., Cho, K. S., Lee, W. H., Park, S. and Fujihira, M., 'Fractal Memory Function of Biomolecular Photodiode Consisting of Ferrocene/flavin/viologen/cytochrome c Hetero- film,' J. Ind. Eng. Chem., 9, 31-36(2003) https://doi.org/10.1021/ie50085a008
  32. Roth, K. M., Dontha, N., Dabke, R. B., Gryko, D. T., Clausen, C., Lindsey, J. S., Bocian, D. F. and Kuhr, W. G., 'Molecular Approach Toward Information Storage Based on the Redox Properties of Porphyrins in Selfassembled Monolayers,' J. Vac. Sci. Technol. B., 18, 2359-2364(2000) https://doi.org/10.1116/1.1310657
  33. Gryko, D. T., Clausen, C., Roth, K. M., Dontha, N., Bocian, D. F., Kuhr, W. G. and Lindsey, J. S., 'Synthesis of 'Porphyrinlinker- thiol' Molecules with Diverse Linkers for Studies of Molecular-based Information Storage,' J. Org. Chem., 65, 7345- 7355(2000) https://doi.org/10.1021/jo000487u
  34. Roth, K. M., Lindsey, J. S., Bocian, D. F. and Kuhr, W. G., 'Characterization of Charge Storage in Redox-active Self-assembled Monolayers,' Langmuir, 18, 4030-4040(2002) https://doi.org/10.1021/la025525e
  35. Roth, K. M., Yasseri, A. A., Liu, Z., Dabke, R. R., Malinovskii, V., Schweikart, K. H., Yu, L., Tiznado, H., Zaera, F., Lindsey, J. S., Kuhr, W. G. and Bocian, D. F., 'Measurements of Electrontransfer Rates of Charge-storage Molecular Monolayers on Si(100) Toward Hybrid Molecular/semiconductor Information Storage Devices,' J. Am. Chem. Soc., 125, 505-517(2003) https://doi.org/10.1021/ja021169a
  36. Roth, K. M., Gryko, D. T., Clausen, C., Li, J., Lindsey, J. S., Kuhr, W. G. and Bocian, D. F., 'Comparison of Electron-transfer and Charge-retention Characteristics of Porphyrin-containing Self-assembled Monolayers Designed for Molecular Information Storage,' J. Phys. Chem. B., 106, 8639-8648(2002) https://doi.org/10.1021/jp025850a
  37. Ambroise, A., Li, J., Yu, L. and Lindsey, J. S., 'A Selfassembled Light-harvesting Array of Seven Porphyrins in a Wheel and Spoke Architecture,' Organic Lett., 2, 2563-2566(2000) https://doi.org/10.1021/ol006036d
  38. Li, Q. G., Mathur, M., Homsi, Surthi, S., Misra, V., Malinovskii, V., Schweikart, K. H., Yu, L., Lindsey, J. S., Liu, Z., Dabke, R. B., Yasseri, A., Bocian, D. F. and Kuhr, W. G., 'Capacitance and Conductance Characterization of Selfassembled Ferrocene Monolayers on Silicon Surfaces for Memory Applications,' Appl. Phys. Lett., 81, 1494(2002) https://doi.org/10.1063/1.1500781
  39. Tajima, H., Ikeda, S., Matsuda, M., Hanasaki, N., Oh, J. W. and Akiyama, H., 'A Light-emitting Diode Fabricated from Horseheart Cytochrome c,' Solid State Com., 126, 579-581(2003) https://doi.org/10.1016/S0038-1098(03)00305-3
  40. Kurian, K. M., Watson, C. J. and Willye, A. M., 'DNA Chip Technology,' J. Pathol., 187, 267-271(1999) https://doi.org/10.1002/(SICI)1096-9896(199902)187:3<267::AID-PATH275>3.0.CO;2-#
  41. Oh, S. J., Cho, S. J., Kim, C. O. and Park, J. W., 'Characteristics of DNA Microarray Fabricated on Various Aminosilane Layers,' Langmuir, 18, 1764-1769(2002) https://doi.org/10.1021/la0113522
  42. Hahm, J.-I. and Charles, M. L., 'Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,' Nano Lett., 4, 51-54(2004) https://doi.org/10.1021/nl034853b
  43. Mitchell, P., 'A Perspective on Protein Microarrays,' Nat. Biotechnol., 20, 225-229(2002) https://doi.org/10.1038/nbt0302-225
  44. Ferretti, Paynter, S., S., Russel, D. A., Sapsford, K. E. and Richardson, D. J., 'Self-assembled Monolayers: A Versatile Tool for the Formation of Bio-surfaces,' Trends. Anal. Chem., 19, 530-540 (2000) https://doi.org/10.1016/S0165-9936(00)00032-7
  45. Oh, B. K., Kim, Y. K., Lee, W., Bae, Y. M., Lee, W. H. and Choi, J. W., 'Immunosensor for Detection of Legionellapneumophila Using Surface Plasmon Resonance,' Biosens. Bioelectron., 18, 605-611(2003) https://doi.org/10.1016/S0956-5663(03)00032-0
  46. Ruiz-Taylor, L. A., Martin, T. L., Zaugg, F. G., Witte, K., Indermuhl, P., Nock, S. and Wagner, P., 'Monolayers of Derivatized poly(L-lysine)-grafted poly(ethylene glycol) on Metal Oxides as a Class of Biomolecular Interfaces,' Proc. Natl. Acad. Sci., USA, 98, 852-857(2001)
  47. Sigal, G. B., Bamdad, C., Barberis, A., Strominger, J. and Whitesides, G. M., 'A Self-assembled Monolayer for the Binding and Study of Histidine-tagged Proteins by Surface Plasmon Resonance,' Anal. Chem., 68, 490-497(1996) https://doi.org/10.1021/ac9504023
  48. Mrksich, M. and Whitesides, G. M., 'Patterning Self-assembled Monolayers Using Microcontact Printing: A New Technology for Biosensors,' Trends in Biotechnology, 13, 228-235(1995) https://doi.org/10.1016/S0167-7799(00)88950-7
  49. Bernard, A., Delamarche, E., Schmid, H., Michel, B., Bosshard, H. R. and Biebuyck, H., 'Printing Patterns of Proteins,' Langmuir, 14, 2225-2229(1998) https://doi.org/10.1021/la980037l
  50. Delamarche, E., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J. and Donzel, C., 'Hydrophilic poly(dimethylsi1oxane) Stamps for Microcontact Printing,' Adv. Mater., 13, 1164(2001) https://doi.org/10.1002/1521-4095(200108)13:15<1164::AID-ADMA1164>3.0.CO;2-S
  51. Roda, A., Gardigli, M., Russo, C., Pasini, P. and Baraldini, M., 'Protein Microdeposition Using a Conventional Ink-jet Printer,' Biotechniques, 28, 492-496(2000)
  52. Pardo, L., Wilson, W. C. and Boland, T. J., 'Characterization of Patterned Self-assembled Monolayers and Protein Arrays Generated by the Ink-jet Method,' Langmuir, 19, 1462-1466(2003) https://doi.org/10.1021/la026171u
  53. Lee, B. H., Kim, J. W., Ishimoto, K., Yamagata, Y., Tanioka, A. and Nagamune, T., 'Fabrication of Protein Microarrays for Immunoassay Using the Electrospray Deposition (ESD) Method,' J. Chem. Eng. Jap., 36, 1370-1375(2003) https://doi.org/10.1252/jcej.36.1370
  54. Kodadek, T., 'Protein Microarrays: Prospects and Problems,' Chem. Biol., 8, 105-115(2001) https://doi.org/10.1016/S1074-5521(00)90067-X
  55. Templin, M. F. D. Stoll, M. Schrenk, P. C. Traub, Vohringer, C. F. and Joos, T. O., 'Protein Microarray Technology,' Trends Biotechnol., 20, 160-166(2002) https://doi.org/10.1016/S0167-7799(01)01910-2
  56. Fung, E. T., Thulasiraman, V., Weinberger, S. R. and Dalmasso, E. A., 'Protein Biochips for Differential Profiling,' Curr. Opin. Biotechnol., 12, 65-69(2001) https://doi.org/10.1016/S0958-1669(00)00167-1
  57. Kricka, L. J., 'Microchips, Microarrays, Biochips and Nanochips: Personal Laboratories for the 21st Century,' Clin. Chim. Acta., 307, 219-223(2001) https://doi.org/10.1016/S0009-8981(01)00451-X
  58. Pierre, T., Lars, L., Knoll, W. and Offenhusser, A., 'PDMS Device for Patterned Application of Microfluids to Neuronal Cells Arranged by Microcontact Printing,' Biosens. Bioelectron., 17, 87-93(2002) https://doi.org/10.1016/S0956-5663(01)00279-2
  59. Lehnert, T., Gijs, M., Netzer, R. and Bischoff, U., 'Realization of Hollow SiO2 Micronozzles for Electrical Measurements on Living Cells,' Appl. Phys. Lett., 81, 5063-5065(2002) https://doi.org/10.1063/1.1528292
  60. Kathryn, G., Klemic, J., Klemic, F., Reed, M. A. and Sigworth, F. J., 'Micromolded PDMS Planar Electrode Allows Patch Clamp Electrical Recordings from Cells,' Biosens. Bioelectron., 17, 597- 604(2002) https://doi.org/10.1016/S0956-5663(02)00015-5
  61. Huang, Y., Sekhon, N. S., Borninski, J., Chen, N. and Rubinsky, B., 'Instananeous Quantitative Single-cell Viability Assessment by Electrical Evaluation of Cell Membrane Integrity with Microfabricated Devices,' Sens. Actuators A, 105, 31-39(2003) https://doi.org/10.1016/S0924-4247(03)00084-0
  62. Kapur, R., Giuliano, K., Campana, M., Adams, T., Olson, K., Jung, D., Mrksich, M., Vasudevan, C. and Taylor, L., 'Streamlining the Drug Discovery Process by Integrating Miniaturization, High Throughput Screening, High Content Screening, and Automation on the CellChip$^{TM}$ System,' Biomed. Microdevices, 2, 99-109(1999) https://doi.org/10.1023/A:1009993519771
  63. Ziauddin, J. and Sabatini, D. M., 'Microarrays of Cells Expressing Defined cDNAs,' Nature, 411, 107-110(2001) https://doi.org/10.1038/35075114
  64. Randy, Z., Bailey, S. N. and Sabatini, D. M., 'Cell Biological Applications of Transfected Cell Microarrays,' Trends Cell Biol., 12, 485-488(2002) https://doi.org/10.1016/S0962-8924(02)02354-1
  65. Stephan, J. P., Schanz, S., Wong, A., Schow, P., Lee, W. and Wong, T., 'Development of a Frozen Cell Array as a High-throughput Approach for Cell-based Analysis,' Am. J. Pathol., 161, 787-97(2002) https://doi.org/10.1016/S0002-9440(10)64238-1