Dielectric and Piezoelectric Properties of $Bi_{0.5}\left(Na_{1-x}K_{x} \right)_{0.5}\, TiO_{3}$ Ceramics

$Bi_{0.5}\left(Na_{1-x}K_{x} \right)_{0.5}\, TiO_{3}$ 무연 세라믹의 유전 및 압전 특성

Kim, Hyeong-Uk;Kim, Il-Won;Kim, Seong-Cheol;Kim, Yeong-Hyeok;An, Chang-Won;Lee, Jae-Sin;Jin, Byeong-Mun
김형욱;김일원;김성철;김영혁;안창원;이재신;진병문

  • Published : 20060000

Abstract

$Pb(Zr,Ti)O_{3}$(PZT) is a well known material because its piezoelectric properties, such as its electromechnical coupling factor ($k_{33}$), mechanical quality factor (Qm), and piezoelectric coefficient ($d_{33}$), are good. However, environmental concerns call for the avoidance of lead contents in electronic devices. In this study, we fabricated $Bi_{0.5}\left(Na_{1-x}K_{x} \right)_{0.5}\, TiO_{3}$(BNKT) ceramics and investigated their dielectric and piezoelectric properties. The phase of the BNKT ceramics changed from rhombohedral to tetragonal with increasing potassium contents, and a morphotropic phase boundary (MPB) occurred in the potassium concentration range of x = 0.15 ~ 0.20. The BNKT ceramics with a potassium content x = 0.15 had high electromechanical coupling ($k_{33}$) and piezoelectric ($d_{33}$) coefficients of 43 % and 140 pC/N, respectively.

PZT계 압전 세라믹은 환경에 유해한 납 (Pb)이 60 wt % 이상 포함되어 있어 인체에 유해하므로 산업계에서 납이 함유되지 않는 친환경 무연 (無鉛) 압전 소재 개발이 요구되고 있다. 이와 같은 요구에 의해 K (potassium) 치환량에 따른 $Bi_{0.5}\left(Na_{1-x}K_{x} \right)_{0.5}\, TiO_{3}$ (BNKT) 세라믹을 제작하여 유전 및 압전 특성을 조사하였다. K 치환량이 증가함에 따라 BNKT 세라믹은 rhombohedral 상에서 tetragonal 상으로 상전이 하였으며, K 치환량이 x = 0.15 영역에서 두상이 공존하는 상 경계영역 (Morphotropic Phase Boundary, MPB)이 존재하고 이 영역에서 높은 전기기계결합계수 ($k_{33} \simeq 43 %$)와 압전계수 ($d_{33} \simeq 43 %$)를 나타내었다.

Keywords

References

  1. Y. Sieto, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature 432, 84 (2004) https://doi.org/10.1038/nature03028
  2. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  3. T. Takenaka, T. Okuda and K. Takegahara, Ferroelectrics 196, 175 (1997) https://doi.org/10.1080/00150199708224156
  4. J. Ravez and A. Simon, Materials Letters 36, 81 (1998) https://doi.org/10.1016/S0167-577X(98)00008-1
  5. M. Kimura, T. Minamikawa, A. Ando and Y. Saklabe, Jpn. J. Appl. Phys. 36, 6051 (1997) https://doi.org/10.1143/JJAP.36.6051
  6. N. Kaeqkamnerd, T. Takenaka, K. Saklata and K. Tada, Sensors and Materials 9, 47 (1997)
  7. H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 36, 6055 (1997) https://doi.org/10.1143/JJAP.36.6055
  8. H. Nagata, M. Yoshida, Y. Makiuchi and T. Takenaka, Jpn. J. Appl. Phys. 42, 7401 (2003) https://doi.org/10.1143/JJAP.42.7401
  9. J. A. Zvirgads, P. P. Kapostins, J. V. Zvirgzde, T. V. Kruzina, Ferroelectrics 40, 75 (1982) https://doi.org/10.1080/00150198208210600
  10. S. B. Vakhrushev, B. E. Kvyatkovsky, R. S. Malysheva, N. M. Okuneva, E. L. Plachenovs, P. P. Syrnikov, Sov. Phys. Crystallography. 34, 89 (1989)
  11. S. E. Park, K. S. Hong, J. Appl. Phys. 79, 383 (1996) https://doi.org/10.1063/1.362702
  12. B. Jaff, Piezoelectric Ceramics, (Academic Press, London, 1971)
  13. C. F. Buhrer, J. Chem. Phys. 36, 798 (1962) https://doi.org/10.1063/1.1732613
  14. F. S. Galasso, Structure, properties, and reparation of peroveskite-type compounds, (Pergamon press, Oxford, 1969)
  15. A. Sasaki, T. Chiba, Y. Mamiyai and E. Otuski, Jpn. J. Appl. Phys. 38, 5564 (1999) https://doi.org/10.1143/JJAP.38.5564