Electrical Properties of the ZnO Nanowire Transistor and its Analysis with Equivalent Circuit Model

Yim, C.Y.;Woo, Y.S.;Kim, G.T.;Jeon, D.Y.;Lee, J.S.;Kim, K.H.;Kim, S.;Roth, Siegmar

  • Published : 20060000

Abstract

A single ZnO nanowire .eld-e��ect transistor(FET) was fabricated and its current-voltage char- acteristics were recorded at the temperatures ranging from T = 107 K to 300 K. Current-voltage characteristics showed typical non-ohmic behaviors with noticeable temperature dependence of the carrier concentration and the mobilities, re°ecting the in°uence of the contact barriers formed be- tween the ZnO nanowire and metal electrodes. In this paper, an equivalent circuit model of the ZnO nanowire FET and its analysis methods with PSPICE simulation are suggested in order to model the contact barriers in nanowire devices.

Keywords

References

  1. http://www.intel.com/research/silicon/mooreslaw.htm
  2. J. D. Meindl, Q. Chen and J. A. Davis, Science 293, 2044 (2001) https://doi.org/10.1126/science.293.5537.2044
  3. C. M. Lieber, Sci. Am. Septermber, 58 (2001)
  4. A. P. Alivisatos, Science 271, 933 (1996) https://doi.org/10.1126/science.271.5251.933
  5. D. Appell, Nature 419, 553 (2002) https://doi.org/10.1038/419553a
  6. L. Samuelson, Mater. Today 6, 22 (2003)
  7. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, Nature 409, 66 (2001) https://doi.org/10.1038/35051047
  8. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (2001) https://doi.org/10.1126/science.1062711
  9. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and H. Q. Yan, Adv. Mater. 15, 353 (2003) https://doi.org/10.1002/adma.200390087
  10. Y. Cui, X. Duan, J. Hu and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000) https://doi.org/10.1021/jp0009305
  11. Y. Huang, X. Duan, Y. Cui and C. M. Lieber, Nano Lett. 2, 101 (2002) https://doi.org/10.1021/nl015667d
  12. Y. Cui and C. M. Lieber, Science 291, 891 (2000)
  13. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science 294, 1313 (2001) https://doi.org/10.1126/science.1066192
  14. V. Derycke, R. Martel, J. Appenzeller and P. Avouris, Nano Lett. 1, 453 (2001) https://doi.org/10.1021/nl015606f
  15. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294, 1317 (2001) https://doi.org/10.1126/science.1065824
  16. G. C. Yi, C. Wang and W. I. Park, Semicond. Sci. Technol. 20, S22 (2005) https://doi.org/10.1088/0268-1242/20/4/003
  17. G. Horowitz, R. Hajlaoui, D. Fichou and A. E. Kassmi, J. Appl. Phys. 85, 3202 (1999) https://doi.org/10.1063/1.369661
  18. J. Goldberger, D. J. Sirbuly, M. Law and P. Yang, J. Phys. Chem. B 109, 9 (2005) https://doi.org/10.1021/jp0452599
  19. P. V. Necliudov and M. S. Shur, J. Appl. Phys. 88, 6594 (2000) https://doi.org/10.1063/1.1323534
  20. S. Dimitrijev, Understanding Semiconductor Devices (Oxford University Press, New York, 2000), p. 255