Effect of Corner Shapes on Whispering Gallery Mode Lasing inSemiconductor Square Microcavities

Moon, Hee-Jong;Jin, You-Yong;Hyun, Kyung-Sook;Kwon, Yong-Hwan

  • Published : 20060000

Abstract

We investigated the spectral characteristics of whispering gallery mode (WGM) lasing in semiconductor square microcavities with various corner shapes. For a simple square cavity, the lasing spectrum showed a complex peak pattern with a broad envelope due to lasing of multi-spatial WGMs. In order to reduce the number of lasing modes, we proposed and fabricated hollow square cavities with symmetric concave-shaped corners. The lasing peaks appeared as periodic narrow peaks corresponding to closed WGMs due to the strong mode selection roles of proposed geometry. If the corner geometry was modified to form 45-tilted and convex shapes, ring-type WGMs originating from total reflection of light at the four corners could be selectively lased.

Keywords

References

  1. S. Suzuki, Y. Kokubun, M. Nakazawa, T, Yamamoto and S. T. Chu, J. Lightwave Technol. 19, 266 (2001) https://doi.org/10.1109/50.917900
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997) https://doi.org/10.1109/50.588673
  3. J.-P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling and H. A. Haus, Opt. Lett. 25, 1636 (2000) https://doi.org/10.1364/OL.25.001636
  4. H. Rokhsari and K. J. Vahala, Phys. Rev. Lett. 92, 253905 (2004) https://doi.org/10.1103/PhysRevLett.92.253905
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992) https://doi.org/10.1063/1.106688
  6. S. Chang, N. B. Rex and R. K. Chang, Appl. Phys. Lett. 75, 166 (1999) https://doi.org/10.1063/1.124307
  7. S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Nature 415, 621 (2002) https://doi.org/10.1038/415621a
  8. S. Ishii and T. Baba, Appl. Phys. Lett. 87, 181102 (2005) https://doi.org/10.1063/1.2120906
  9. S. K. Kim, S. H. Kim, G. H. Kim and Y. H. Lee, J. Korean Phys. Soc. 47, 397 (2005)
  10. S. J. Choi, K. Djordjev, S. J. Choi and P. D. Dapkus, IEEE Photon. Technol. Lett. 15, 1330 (2003) https://doi.org/10.1109/LPT.2003.817990
  11. A. W. Poon, F. Courvoisier and R. K. Chang, Opt. Lett. 26, 632 (2001) https://doi.org/10.1364/OL.26.000632
  12. C. Y. Fong and A. W. Poon, Opt. Express 12, 4864 (2004) https://doi.org/10.1364/OPEX.12.004864
  13. Y. Li, M. Sasaki and K. Hane, J. Micromech. Microeng. 11, 234 (2001)
  14. H. T. Lee, L. Zhou and A. W. Poon, Opt. Lett. 30, 1527 (2005) https://doi.org/10.1364/OL.30.001527
  15. C. Y. Fong and A. W. Poon, Opt. Express 11, 2897 (2003) https://doi.org/10.1364/OE.11.002897
  16. H. J. Moon, K. An and J. H. Lee, Appl. Phys. Lett. 82, 2963 (2003) https://doi.org/10.1063/1.1572966
  17. S. Oku, M. Okayasu and M. Ikeda, IEEE Photon. Technol. Lett. 3, 588 (1991) https://doi.org/10.1109/68.87922
  18. L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner and L. Goldstein, IEEE Photon. Technol. Lett. 15, 377 (2003) https://doi.org/10.1109/LPT.2002.807938
  19. H. J. Moon, S. P. Sun, G. W. Park, J. H. Lee and K. An, Jpn. J. Appl. Phys. 42, L652 (2003) https://doi.org/10.1143/JJAP.42.L652