Oligomeric Structure of the ATP-dependent Protease La (Lon) of Escherichia coli

  • Park, Seong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Jia, Baolei (Division of Applied Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Faculty of Forest Science, Gyeongsang National University) ;
  • Le Van, Duyet (Division of Applied Life Science, Gyeongsang National University) ;
  • Shao, Yong Gi (Division of Applied Life Science, Gyeongsang National University) ;
  • Han, Sang Woo (Department of Chemistry, Gyeongsang National University) ;
  • Jeon, Young-Joo (NRL of Protein Biochemistry, School of Biological Science, Seoul National University) ;
  • Chung, Chin Ha (NRL of Protein Biochemistry, School of Biological Science, Seoul National University) ;
  • Cheong, Gang-Won (Division of Applied Life Science, Gyeongsang National University)
  • Received : 2005.09.21
  • Accepted : 2005.10.27
  • Published : 2006.02.28

Abstract

Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of $Mg^{2+}$, but dissociated into monomers and/or dimers in its absence. Moreover, $Mg^{2+}$-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires $Mg^{2+}$, but not ATP.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Baumeister, W., Dahlmann, B., Hegerl, R., Kopp, F., Luehn, L., et al. (1988a) Electron microscopy and image analysis of the multicatalytic proteinase. FEBS Lett. 241, 239−245 https://doi.org/10.1016/0014-5793(88)81069-X
  2. Baumeister, W., Walz, J., Zuhl, F., and Seemüller, E. (1998b) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367-380 https://doi.org/10.1016/S0092-8674(00)80929-0
  3. Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W., and Goldberg, A. L. (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69−78 https://doi.org/10.1016/S1097-2765(02)00775-X
  4. Beuron, F., Maurizi, M. R., Belnap, D. M., Kocsis, E., Booy, F. P., et al. (1998) At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248-259 https://doi.org/10.1006/jsbi.1998.4039
  5. Birghan, C., Mundt, E., and Gorbalenya, A. E. (2000) A noncanonical Lon proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO J. 19, 114-123 https://doi.org/10.1093/emboj/19.1.114
  6. Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., et al. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140-8148 https://doi.org/10.1074/jbc.M312243200
  7. Chandu, D. and Nandi, D. (2004) Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res. Microbiol. 155, 710-719
  8. Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L. (1988) Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J. Biol. Chem. 263, 11718-11728
  9. Chung, C. H. (1993) Proteases in Escherichia coli. Science 262, 372−374 https://doi.org/10.1126/science.8211156
  10. Chung, C. H. and Goldberg, A. L. (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc. Natl. Acad. Sci. USA 78, 4931−4935
  11. Chung, C. H., Waxman, L., and Goldberg, A. L. (1983) Studies of the protein encoded by the lon mutation, capR9, in Escherichia coli. A labile form of the ATP-dependent protease La that inhibits the wild type protease. J. Biol. Chem. 258, 215-221
  12. Chung, C. H., Yoo, S. J., Seol, J. H., and Kang, M. S. (1997) Characterization of energy-dependent proteases in bacteria. Biochem. Biophys. Res. Commun. 241, 613-616 https://doi.org/10.1006/bbrc.1997.7735
  13. Coux, O., Tanaka, K., and Goldberg, A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801−847 https://doi.org/10.1146/annurev.bi.65.070196.004101
  14. Durr, R. (1991) Displacement field analysis: calculation of distortion measures from displacement maps. Ultramicroscopy 38, 135−141 https://doi.org/10.1016/0304-3991(91)90114-L
  15. Goldberg, A. L. (1992) The mechanism and function of ATPdependent protease in bacterial and animal cells. Eur. J. Biochem. 203, 9−23
  16. Goldberg, A. L., Moerschell, R. P., Chung, C. H., and Maurizi, M. R. (1994) ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 244, 350-375 https://doi.org/10.1016/0076-6879(94)44027-1
  17. Gottesman, S. (1996) Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465−506 https://doi.org/10.1146/annurev.genet.30.1.465
  18. Gottesman, S. (2003) Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565−587 https://doi.org/10.1146/annurev.cellbio.19.110701.153228
  19. Grimaud, R., Kessel, M., Beuron, F., Steven, A. C., and Maurizi, M. R. (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476-12481 https://doi.org/10.1074/jbc.273.20.12476
  20. Hegerl, R. (1996) The EM program package: a platform for image processing in biological electron microscopy. J. Struct. Biol. 116, 30−34
  21. Hoskins, J. R., Park, M., Maurizi, M. R., and Wickner, S. (1998) The role of the ClpA chaperone in proteolysis by ClpAP. Proc. Natl. Acad. Sci. USA 95, 12135−12140
  22. Ishikawa, T., Maurizi, M. R., Belnap, D., and Steven, A. C. (2000) Docking of components in a bacterial complex. Nature 408, 667−668 https://doi.org/10.1038/35047165
  23. Kang, M. S., Kim, S. R., Kwack, P., Lim, B. K., Ahn, S. W., et al. (2003) Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J. 22, 2893-2902 https://doi.org/10.1093/emboj/cdg289
  24. Kessel, M., Wu, W., Gottesman, S., Kocsis, E., Steven, A. C., et al. (1996) Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome and its ATP-dependent activator, ClpY. FEBS Lett. 398, 274-278 https://doi.org/10.1016/S0014-5793(96)01261-6
  25. Kim, K. I., Cheong, G.-W., Park, S. C., Ha, J. S., Woo, K. M., et al. (2000) Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J. Mol. Biol. 303, 655-666 https://doi.org/10.1006/jmbi.2000.4165
  26. Marco, S., Urena, D., Carrascosa, J. L., Waldmann, T., Peter, J., et al. (1994) The molecular chaperone TF55: assessment of symmetry. FEBS Lett. 341, 152−155 https://doi.org/10.1016/0014-5793(94)80447-8
  27. Maurizi, M. R., Singh, S. K., Thompson, M. W., Kessel, M., and Ginsburg, A. (1998) Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and ClpP. Biochemistry 37, 7778-7786 https://doi.org/10.1021/bi973093e
  28. Oh, J. Y., Eun, Y. M., Yoo, S. J., Seol, J. H., Seong, I. S., et al. (1998) LonR9 carrying a single $Glu^{614}$ to Lys mutation inhibits the ATP-dependent protease La (Lon) by forming mixed oligomeric complexes. Biochem. Biophys. Res. Commun. 250, 32-35 https://doi.org/10.1006/bbrc.1998.9252
  29. Rohrwild, M., Pfeifer, G., Santarius, U., Müller, S. A., Huang, H. C., et al. (1997) The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4, 133-139 https://doi.org/10.1038/nsb0297-133
  30. Rudyak, S. G., Brenowitz, M., and Shrader, T. E. (2001) $Mg^{2+}$-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry 40, 9317-9323 https://doi.org/10.1021/bi0102508
  31. Saxton, W. O., Pitt, T. J., and Horner, M. (1979) Digital image processing: the Semper system. Ultramicroscopy 4, 343−354 https://doi.org/10.1016/S0304-3991(79)80044-3
  32. Schirmer, E. C., Glover, J. R., Singer, M. A., and Lindquist, S. (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289−296
  33. Sousa, M. C., Trame, C. B., Tsuruta, S., Wilbanks, S. M., Reddy, R. S., et al. (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-643 https://doi.org/10.1016/S0092-8674(00)00166-5
  34. Stahlberg, H., Kutejová, E., Suda, K., Wolpensinger, B., Lustig, A., et al. (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96, 6787−6790
  35. van Heel, M. and Frank, J. (1981) Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6, 187−194
  36. Vasilyeva, O. V., Kolygo, K. B., Leonova, Y. F., Potapenko, N. A., and Ovchinnikova, T. V. (2002) Domain structure and ATP-induced conformational changes in Escherichia coli protease Lon revealed by limited proteolysis and autolysis. FEBS Lett. 526, 66-70 https://doi.org/10.1016/S0014-5793(02)03117-4
  37. Wang, J., Hartling, J. A., and Flanagan, J. M. (1997) The structure of ClpP at 2.3 ${\AA}$ resolution suggests a model for ATPdependent proteolysis. Cell 91, 447−456 https://doi.org/10.1016/S0092-8674(00)80431-6
  38. Wang, J., Song, J. J., Im, Y. J., Rho, S. H., Seong, I. S., et al. (2001) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177-184 https://doi.org/10.1016/S0969-2126(01)00570-6
  39. Woo, K. M., Kim, K. I., Goldberg, A. L., Ha, D. B., and Chung, C. H. (1992) The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem. 267, 20429-20434
  40. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., et al. (1996) Purification and characterization of the heat shock proteins HslV and HslU that form a new ATPdependent protease in Escherichia coli. J. Biol. Chem. 271, 14035−14040
  41. Yoo, S. J., Seol, J. H., Seong, I. S., Kang, M. S., and Chung, C. H. (1997) ATP binding, but not its hydrolysis, is required for assembly and proteolytic activity of the HslVU protease in Escherichia coli. Biochem. Biophys. Res. Commun. 238, 581−585 https://doi.org/10.1006/bbrc.1997.7341
  42. Zolkiewski, M., Kessel, M., Ginsburg, A., and Maurizi, M. R. (1999) Nucleotide-dependent oligomerization of ClpB from Escherichia coli. Protein Sci. 8, 1899-1903 https://doi.org/10.1110/ps.8.9.1899