Effects of PPAR-$\alpha$ and -$\gamma$ Agonists on Fatty Acid Metabolism of Muscle Cells in Hyperlipidemic and Hyperglycemic Conditions

고지방 및 고포도당 조건에서 배양한 근육 세포의 지방산 대사에 미치는 PPAR-$\alpha$와 PPAR-$\gamma$ agonist의 효과

Lee, Yong-Jik;Zhao, Zheng-Shan;Kim, Soo-Kyung;Kim, Hae-Jin;Shim, Wan-Sub;Ahn, Chul-Woo;Lee, Hyun-Chul;Cha, Bong-Soo
이용직;조정산;김수경;김혜진;심완섭;안철우;이현철;차봉수

  • Published : 2006.09.30

Abstract

Background: Studies for the regulation of fatty acid metabolism are deficient relatively in skeletal muscle and heart. The investigations in pathological conditions for malonyl-CoA decarboxylase (MCD) and for the relation of MCD and PPAR-$\alpha$․-γ agonists are insufficient in particular. Methods: In the current study, fully differentiated H9c2 muscle cells were exposed to pathological conditions such as hyperlipidemic (0.1 mM Palmitate) and hyperglycemic (16.5 mM Glucose) condition with 5 uM PPAR-γ agonist (rosiglitazone) and 10 uM PPAR-$\alpha$ agonist (WY14,643) and then experiments such as MCD activity assay, MCD real-time RT-PCR, MCD reporter gene assay, MCD Western blotting, PPAR-$\alpha$ Western blotting, and palmitate oxidation test were carried out. Results: Only PPAR-$\alpha$ agonist increased MCD activity. In the result of real-time RT-PCR, both PPAR-$\alpha$ and PPAR-γ agonists elevated MCD mRNA expression in hyperlipidemic condition. MCD protein expression was decreased in hyperlipidemic condition, however, increased in rosiglitazone, or WY14,643 treated conditions. Rosiglitazone, and WY14,643 treated groups showed incresed MCD protein expression in hyperglycemic condition. Hyperlipidemic control group and PPAR-$\alpha$․ヌ-γ agonists treated groups presented about 3.8 times more increased palmitate oxidation level than normolipidemic control group in hyperlipidemic condition. PPAR-$\alpha$ agonist treated group showed 49% more increased palmitate oxidation rate than hyperlipidemic control group in primary cultured rat skeletal muscle cells. The amount of palmitate oxidation from differentiated H9c2 muscle cells that had overexpressed PPAR-$\alpha$ structural genes was more increased than control group. Conclusion: This study suggests that PPAR-$\alpha$ agonist ameliorates the defects induced by hyperlipidemic condition through the regulation of MCD. In summary, a closely reciprocal relation among PPAR-$\alpha$ agonist, MCD, and fatty acid oxidation existed distinctly in hyperlipidemic condition, but not in hyperglycemic condition.

연구배경: 골격근과 심장에서 지방산 대사의 조절에 관한 연구는 상대적으로 부족한 실정이다. 특히 지방산 대사에서 필수적인 역할을 할 것으로 추측되는 malonyl-CoA decarboxylase (MCD)와 PPAR-$\alpha$PPAR-$\gamma$ agonist들과의 상호관 계 등에 관한 병리적 조건에서 수행된 연구는 미흡한 상태 이다. 방법: 본 연구에서는 충분히 분화된 H9c2 근육 세포들을 고지방 (0.1 mM palmitate) 및 고포도당 (16.5 mM glucose)같은 병리적 조건에서 5 uM PPAR-$\gamma$ agonist (rosiglitazone) 혹은 10 uM PPAR-$\alpha$ agonist (WY14,643) 를 처리한 상태에서 MCD activity assay, MCD real-time RT-PCR, MCD reporter gene assay, MCD Western blotting, PPAR-$\alpha$ Western blotting, 그리고 지방산 산화 시험 (palmitate oxidation test)등의 실험을 수행하였다. 결과: 병리적 조건에서 감소된 MCD 활성은 PPAR-$\alpha$ agonist인 WY14,643만이 증가시켰다. real-time RT-PCR을 한 결과 PPAR-$\alpha$ 및 PPAR-$\gamma$ agonist들 둘 다 고지방 조건 에서 MCD mRNA 발현을 증가시켰다. MCD 단백질 발현은 고지방 조건에서 감소하였지만 rosiglitazone과 WY14,643을 처리하였을 때 증가하였다. 고포도당 조건에서 고포도당 대조군은 정상 대조군과 단백질 발현에 차이는 없었으나 rosiglitazone과 WY14,643을 처리 하였을 때 MCD 단백질 발현이 증가하였다. 고지방 조건에서 고지방 대조군과 PPAR-$\alpha$․PPAR-$\gamma$ agonist들을 처리한 군들은 정상 대조군보다 3.8배 더 증가한 지방산 산화량을 나타내었다. 배양한 쥐 골격근 세포들에서 지방산 산화 시험 결과는 PPAR-$\alpha$ agonist 처리 군이 고지방 대조군보다 49% 더 증가한 지방산 산화량을 보여 주었다. PPAR-$\alpha$ 구조 유전자가 과 발현된 H9c2 근육 세포들은 대조군보다 지방산 산화량이 더 증가 하였다. 결론: 이상의 연구를 통해서 PPAR-$\alpha$ agonist인 WY14,643은 MCD를 조절함으로써 고지방 조건으로 인해 유도된 대사적 결함들을 완화하는 효과가 있다고 추론할 수 있다. 그러나 PPAR-$\gamma$ agonist인 rosiglitazone은 병리적 조건에서 MCD 및 지방산 산화와 밀접한 상호관계를 보여주지 못했다. 결론적으로 고지방 조건에서 PPAR-$\alpha$ agonist인 WY14,643, MCD, 그리고 지방산 산화 사이에는 밀접한 상호관계가 존재한다. 그러나 고포당 조건에서는 이와 같은 상호관계는 관찰되지 않았다.

Keywords

References

  1. Chien D, Dean D, Saha AK, Flatt JP, and Ruderman NB: Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. Am J Physiol Endocrinol Metab 279:E259-65, 2000 https://doi.org/10.1152/ajpendo.2000.279.2.E259
  2. Dyck JRB, Berthiaume LG, Thomas PD, Kantor PK, Amy J. Barr AJ, Barr R: Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem. J 350: 599-608, 2000 https://doi.org/10.1042/0264-6021:3500599
  3. Alam N, and Saggerson, ED: Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Biochem. J 334:233-41, 1998 https://doi.org/10.1042/bj3340233
  4. Ruderman NB, Saha AK, Vavvas D, and Witters LA: Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol. 276:E1-18, 1999
  5. Saha AK, Schwarsin AJ, Roduit R, Kaushik V, Tornheim K, and Ruderman NB: Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-Aminoimidazole-4-arboxamide-1-D-ribofuranoside. J Biol Chem 275:24279-83, 2000 https://doi.org/10.1074/jbc.C000291200
  6. Awan MM, and Saggerson ED: Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 295: 61-6, 1993 https://doi.org/10.1042/bj2950061
  7. Kudo N, Barr AJ, Barr RL, Desai S, and Lopaschuk GD: High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513-20, 1995 https://doi.org/10.1074/jbc.270.29.17513
  8. Sakamoto J, Barr RL. Kavanagh KM, and Lopaschuk GD: Conribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol Heart Circ Physiol 278: H1196-204, 2000
  9. Park HJ, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, and Saha AK: Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 277:32571-7, 2002 https://doi.org/10.1074/jbc.M201692200
  10. Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595-607, 2000 https://doi.org/10.2337/diabetes.37.12.1595
  11. Ruderman NB, Saha AK, Vavvas D, and Witters LA: Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol Endocrinol Metab 276: E1-18, 1999
  12. Shimabukuro M, Zhou Y, Levi M, and Unger R: Fatty acid-induced b-cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 95(5):2498-502, 1998
  13. Unger R, Zhou Y, and Orci L: Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA 96:2327-32, 1999
  14. Zhou Y, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, and Unger R: Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784-89, 2000
  15. Young ME, Goodwin G, Ying J, Guthrie P, Christopher R. Wilson CR, Laws FA, Taegtmeyer H: Regulation of cardic and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Enocrinol Metab 280:E471-9, 2001
  16. Latruffe N, Vamecq J: Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism. Biochimie 79:81-94, 1997 https://doi.org/10.1016/S0300-9084(97)81496-4
  17. Zinman B: PPARγ agonists in type2 diabetes: how far have we come in preventing the inevitable- A review of the metabolic effects of rosiglitazone. Diabetes Obes Metab 3:S34-43, 2001 https://doi.org/10.1046/j.1463-1326.2001.00033.x
  18. Kramer D, Shapiro R, Adler A, Bush E, Rondinone CM: Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism 50: 1294-300, 2001 https://doi.org/10.1053/meta.2001.27202
  19. Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino LJ, DeFranzo RA: Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24:710-9, 2001 https://doi.org/10.2337/diacare.24.4.710
  20. Spiegelman BM: PPAR-γ: Adipogenic regulator, thiazolidinedione receptor, Diabetes 47:507-17, 1998 https://doi.org/10.2337/diabetes.47.4.507
  21. Chou CJ, Haluzik M, Gregory C, Dietz KR, Vinson C, Gavrilova O, and Reitman ML: WY14643, a PPAR ${\alpha}$ Agonist, Improves Hepatic and Muscle and Steatosis and Reverses Insulin resistance in Lipoatrophic A-ZIP/F-1 Mice. J Biol Chem 277:24484-9, 2002 https://doi.org/10.1074/jbc.M202449200
  22. Lee GY, Cho JW, Lee HC, Kim YS: Genomic organization and characterization of the promoter of rat malonyl-CoA decarboxylase gene. Biochim Biophys Acta 1577(1):133-8, 2002 https://doi.org/10.1016/S0167-4781(02)00398-6
  23. Blau HM, Webster C: Isolation and characterization of human muscle cells. Proc Natl Acad Sci USA 78:L5623-7, 1981
  24. Sarabia V, Lam L, Burdett E, Leiter LA, Klip A: Glucose uptake in human and animall muscle cells in culture. Biochem Cell Biol 68:536-42, 1990 https://doi.org/10.1139/o90-076
  25. Rognstad R: Estimation of peroxisomal and mitochondrial fatty acid oxidation in rat hepatocytes using tritiated substrates. Biochem J 279:147-50, 1991 https://doi.org/10.1042/bj2790147
  26. Young ME, Goodwin GW, Ying J, Guthrie P, Wilson CR, Laws FA, and Taegtmeyer H: Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280:E471-9, 2001 https://doi.org/10.1152/ajpendo.2001.280.3.E471
  27. Lee GY, Kim NH, Zhao ZS, Cha BS, and Kim YS: Peroxisomal-proliferator-activated receptor a activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem J 378:983-90, 2004 https://doi.org/10.1042/BJ20031565
  28. Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JRB, Belke DD, Severson DL, Kelly DP, Lopaschuk GD: A Role for Peroxisome Proliferator-activated Receptor${\alpha}$ (PPAR${\alpha}$) in the Control of Cardiac Malonyl-CoA Levels. J Biol Chem 277:4098-103, 2002 https://doi.org/10.1074/jbc.M106054200
  29. Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, Kraus WE, Dohm GL: Peroxisome Proliferator-Activated $Receptor-{\alpha}$ Regulates Fatty Acid Utilization in Primary Human Skeletal Muscle Cells. Diabetes 51:901-9, 2002 https://doi.org/10.2337/diabetes.51.4.901
  30. Braissant O, Foufelle F, Scotto C, Dauca M, and Wahle W: Differential expression of peroxisome proliferatoractivated receptor (PPARs): tissue distribution of $PPAR-{\alpha},\;-{\beta},\;and\;-{\gamma}$ in the adult rat. Endocrinology 137(1):354-66, 1996 https://doi.org/10.1210/en.137.1.354
  31. Kim H, Haluzik M, Asghar Z, Yau D, Joseph JW, Fernandez AM, Reitman ML, Yakar S, Stannard B, Heron-Milhavet L, Wheeler MB, LeRoith D: Peroxisome Proliferator-Activated $Receptor-{\alpha}$ Agonisr Treatment in a Transgenic Model of Type 2 Diabetes Reverses the Lipotoxic State and Improves Glucose Homeostasis. Diabetes 52:1770-8, 2003 https://doi.org/10.2337/diabetes.52.7.1770
  32. Koh EH, Kim MS, Park JY, Kim HS, Youn JY, Park HS, Youn JH, Lee KU: Peroxisome Proliferator-Activated Receptor (PPAR)-${\alpha}$ Activation Prevents Diabetes in OLETF Rats: Comparison With PPARActivation. Diabetes 52:2331-37, 2003 https://doi.org/10.2337/diabetes.52.9.2331
  33. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, Winegar DA, Corton JC, Dohm GL, Kraus WE: Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem 277:26089-97, 2002 https://doi.org/10.1074/jbc.M203997200
  34. Wolf G: The function of the nuclear receptor peroxisome proliferator-activated receptor delta in energy homeostasis. Nutr Rev 61:387-90, 2003 https://doi.org/10.1301/nr.2003.nov.387-390