Role of Oxygen in Green Emission from ZnO Thin Films

Kong, Dong Ho;Kim, Tae Geun;Park, Jung Ho;Choi, Won Cheol;Shin, Young Cheol

  • Published : 20060000

Abstract

To confirm the role of oxygen in green emission from ZnO thin films on Si(100) substrates, we deposited thin films sputtering with a ZnO target. The O2 content, as a reactive gas was changed, and a sequential annealing was done in a N2 or an O2 atmosphere. The photoluminescence spectra, showed that thermal annealing in an O2 ambient, rather than increasing the content of O2 gas during the deposition process, was very effective in increasing the green emission from the ZnO thin films. This may be associated with the fact that the number of interstitial Zn (Zni) and O vacancies (VO) is reduced by the effective incorporation of oxygen atoms during the annealing process. We also found from the results of Fourier transform infrared and X-ray diffraction measurements that zinc silicate (Zn2SiO4) was generated at the interface during thermal annealing. However, we could not find any evidence that the green emission (520 nm) originated from zinc silicate

Keywords

References

  1. Tae Eun Park, Dong Chan Kim, Bo Hyun Kong and Hyung Koun Cho, J. Korean Phys. Soc. 45, S697 (2004)
  2. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang and D. L. Liu, J. Appl. Phys. 95, 6268 (2004) https://doi.org/10.1063/1.1713040
  3. Eun Cheol Lee, Y. S. Kim, Y. G. Jin and K. J. Chang, J. Korean Phys. Soc. 39, S23 (2001)
  4. Hyeon Jun Lee, Sung Kyu Kim, Chae Ryong Cho, Sung Jin Kim and Se Young Jeong, J. Korean Phys. Soc. 46, S34 (2005)
  5. D. C. Look, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell and D. C. Reynolds, Appl. Phys. Lett. 81, 1830 (2002) https://doi.org/10.1063/1.1504875
  6. U. Manna, J. Yoo, S. K. Dhungel, M. Gowtham, U. Gangopadhyay, K. Kim, J. Yi and H. Saha, J. Korean Phys. Soc. 46, 1378 (2005)
  7. D. C. Look, G. M. Renlund, R. H. Burgener and J. R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004) https://doi.org/10.1063/1.1825615
  8. T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze and T. G. Khulordava, J. Cryst. Growth 117, 366 (1992) https://doi.org/10.1016/0022-0248(92)90777-G
  9. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79, 943 (2001) https://doi.org/10.1063/1.1394173
  10. S. A. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys. 84, 2287 (1998) https://doi.org/10.1063/1.368295
  11. P.-S. Xu, Y.-M. Sun, C.-S. Shi, F.-Q. Xu and H.-B. Pan, Chin. Phys. Lett. 18, 1252 (2001) https://doi.org/10.1088/0256-307X/18/9/331
  12. J. Lin, D. U. Sanger, M. Mennig and K. Barner, Thin Solid Films 360, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00523-4
  13. X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou and C. Xu, Chem. Phys. Lett. 364, 57 (2002) https://doi.org/10.1016/S0009-2614(02)01281-2
  14. R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y. Zhang and S. Buddhudu, Mater. Sci. Engin. B 100, 136 (2003) https://doi.org/10.1016/S0921-5107(03)00084-9