Synthesis of SnO2 Nanowires and Their Gas Sensing Characteristics

Hwang, In-Sung;Choi, Young-Jin;Park, Jae-Hwan;Park, Jae-Gwan;Kim, Ki-Won;Lee, Jong-Heun

  • Published : 20060000

Abstract

A network of SnO2 nanowires was fabricated on the electrodes and their NO2 gas sensing properties were examined. SnO2 nanowires were synthesized by using a simple thermal evaporation process with Sn metal powders at low temperatures of 600 - 700 C. The diameters of the nanowires ranged from 50 nm to 100 nm, which was determined by the processing temperature and the oxygen content. At a the NO2 concentration of 20 ppm, a sensitivity of 300, a response time of 100 s, and a recovery time of 200 s were observed.

Keywords

References

  1. X. F. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409, 66 (2001) https://doi.org/10.1038/35051047
  2. Y. Cui, Q. Q. Wei, H. K. Park and C. M. Lieber, Science 293, 1289 (2001) https://doi.org/10.1126/science.1062711
  3. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002) https://doi.org/10.1063/1.1504867
  4. A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Adv. Mater. 15, 997 (2003) https://doi.org/10.1002/adma.200304889
  5. M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B 107, 659 (2003) https://doi.org/10.1021/jp0271054
  6. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. W. Zhou, Appl. Phys. Lett. 82, 613 (2003) https://doi.org/10.1063/1.1540234
  7. Y. L. Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc. 125, 16176 (2003) https://doi.org/10.1021/ja037743f
  8. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science 276, 1395 (1997) https://doi.org/10.1126/science.276.5317.1395
  9. Z. Pan, Z. Dai and Z. L.Wang, Science 291, 1947 (2001) https://doi.org/10.1126/science.1058120
  10. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei and C. W. Zhou, Adv. Mater. 15, 1754 (2003) https://doi.org/10.1002/adma.200305439
  11. D. F. Zhang, L. D. Sun, J. L. Yin and C. H. Yan, Adv. Mater. 15, 1022 (2003) https://doi.org/10.1002/adma.200304899
  12. J. Shieh, H. M. Feng, M. H. Hon and H. Y. Juang, Sens. Actuators B 86, 75 (2002) https://doi.org/10.1016/S0925-4005(02)00150-8
  13. R. Winter, K. Scharnagl, A. Fuchs, T. Doll and I. Eisele, Sens. Actuators B 66, 85 (2000) https://doi.org/10.1016/S0925-4005(99)00298-1
  14. H. Steffes, C. Imawan, F. Solzbacher and E. Obermeier, Sens. Actuators B 78, 106 (2001) https://doi.org/10.1016/S0925-4005(01)00799-7
  15. T. A. Jones and B. Bott, Sens. Actuators 9, 27 (1986) https://doi.org/10.1016/0250-6874(86)80004-X
  16. D. Xie, Y. Jiang, W. Pan, D. Li, Z. Wu and Y. Li, Sens. Actuators B 90, 163 (2003) https://doi.org/10.1016/S0925-4005(03)00036-4
  17. M. Law, H. Kind, B. Messer, F. Kim and P. D. Yang, Angew. Chem., Int. Ed. 41, 2405 (2002) https://doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
  18. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964) https://doi.org/10.1063/1.1753975
  19. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001) https://doi.org/10.1023/A:1014405811371
  20. N. Matsunaga, G. Sakai, K. Shimanoe and N. Yamazoe, Sens. Actuators B 83, 125 (2002)
  21. G. Sakai, N. Matsunaga, K. Shimanoe and N. Yamazoe, Sens. Actuators B 80, 125 (2001) https://doi.org/10.1016/S0925-4005(01)00890-5
  22. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B 3, 147 (1991) https://doi.org/10.1016/0925-4005(91)80207-Z
  23. X. Wang, S. S Yee and W. P. Carey, Sens. Actuators B 24-25, 454 (1995)
  24. J. Huang, Chem. Mater. 17, 3513 (2005) https://doi.org/10.1021/cm047819m