Glucose Oxidation and Production of Reactive Oxygen Species (ROS) in INS-1 Cells and Rat Islet Cells Exposed to High Glucose

고농도 포도당에 노출된 INS-1세포와 백서 췌도 세포에서 포도당 산화 및 Reactive Oxygen Species (ROS) 생성

Yoon, Ji-Sung;Won, Kyu-Chang;Lee, Hyoung-Woo
윤지성;원규장;이형우

  • Published : 2006.07.31

Abstract

Background: Chronic exposure of pancreatic islets to supraphysiologic concentrations of glucose causes beta cell dysfunction that is a process known as glucose toxicity. It has been reported that hyperglycemia increases the production of reactive oxygen species (ROS) in human islets and that ROS accumulation causes beta cell dysfunction associated with low capacity of intrinsic antioxidant enzymes. Also it has been postulated that this increase in ROS is prevented by an inhibitor of electron transport chain complex. The purpose of this study were to determine whether prolonged exposure of pancreatic islets to supraphysiologic glucose concentrations disrupts the intracellular balance between ROS thereby causing defective insulin secretion and to evaluate the site of hyperglycemiainduced ROS production. Methods: INS-1 cells & rat islets were incubated in increasing concentrations of glucose and either an inhibitor of complex I & II (TTFA), an uncoupler of oxidative phosphorylation (CCCP), aCCA, etc and also incubated in increasing concentration of glyceraldehyde and N-acetylcystein. Then intracellular peroxide levels by flow cytometric analysis and glucose induced insulin secretion were detected. Results: We observed that incubation with 30 mM glucose increased intracellular peroxide levels but decreased glucose-stimulated insulin secretion (GSIS) (P < 0.05). Exposure to TTFA, CCCP, aCCA did not reduce this increased intracellular peroxide levels, and did not increase GSIS (P < 0.05). 24-h incubation with glyceraldehyde at 5.6 mM glucose increased intracellular peroxide levels and decreased insulin content. Conclusion: These observations indicate that there might be other origins in which ROS species are produced besides electron transport chain in mitochondria and glyceraldehyde may be a key molecule to produce ROS, and induce beta cell dysfunction.

연구배경: 췌장 소도 베타 세포가 장기간 고혈당에 노출되었을 때 인슐린 분비능, 인슐린 mRNA 및 인슐린 gene transcription factor 등이 감소하는 것을 포도당 독성이라고 하며, 췌장 소도 내의 낮은 항산화 효소 및 포도당 대사 과정에서 reactive oxygen species (ROS)의 증가가 그 원인으로 보고되고 있고, 고농도 포도당에 의해 생성된 ROS는 미토콘드리아의 electron transport chain complex 저하제에 의해 감소된다는 보고들도 있다. 이에 연자 등은 고혈당에 노출된 췌장 소도에서 세포 내 ROS 생성장소를 알아보기 위해 본 연구를 시행하였다. 방법: INS-1 세포주 및 백서 췌장소도 세포를 고농도의 포도당에서 배양하고, 또한 미토콘드리아 전자전달계 복합체 저하제 및 산화성 인산화 반응 억제제인 TTFA, CCCP, $\alpha$CCA 등을 처리한 뒤 flow cytometer를 이용하여 세포 내 peroxide치를 측정하고, 인슐린 분비능 등을 측정하였다. 그리고 INS-1 세포주에 glyceraldehyde를 농도별로 24시간 배양하고 N-acetylcystein을 처리하여 세포 내 peroxide 및 인슐린 분비능을 측정하였다. 결과: INS-1 세포를 고농도 포도당 배지 (30 mM 포도당)에 배양하였을 때 세포 내 peroxide치는 증가하였고, 인슐린 분비능은 감소하였다 (P < 0.05). INS-1 세포를 고농도 포도당 배지(30 mM 포도당)에 전자전달계 복합체 저하제인 TTFA, CCCP, $\alpha$CCA 등과 함께 배양하였을 때 세포 내 peroxide는 감소하지 않았고, 인슐린 분비능도 회복되지않았다 (P < 0.05). INS-1 세포를 포도당 대사과정에서 미토콘드리아 진입 전구물질인 glyceraldehyde와 함께 5.6 mM 포도당 농도에서 배양하였을 때 세포 내 peroxide는 증가하였고, 인슐린 분비능은 감소하였다 (P < 0.05). 결론: 췌장 소도 세포의 포도당 독성에 ROS 생성이 중요한 역할을 하고, ROS 생성 장소로 미토콘드리아 이외에도 있다고 보여지며, glyceradehyde는 이러한 ROS 생성 및 베타세포 기능 저하에 영향을 미치는 물질로 생각할 수 있다.

Keywords

References

  1. Robertson RP: Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351-4, 2004 https://doi.org/10.1074/jbc.R400019200
  2. Rossetti L, Giaccari A, DeFronzo RA: Glucose toxicity. Diabetes Care 13:610-30, 1990 https://doi.org/10.2337/diacare.13.6.610
  3. Robertson, RP, Zhang HJ, Pyzdrowski KL, Walseth TF: Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations J Clin Invest 90:320-25, 1992 https://doi.org/10.1172/JCI115865
  4. Olson LK, Redmon JB, Towle HC, Robertson RP: Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest 92:514-9, 1993 https://doi.org/10.1172/JCI116596
  5. Robertson, RP, Olson LK, Zhang HJ: Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 43:1085-9, 1994 https://doi.org/10.2337/diabetes.43.9.1085
  6. Poitout V, Olson LK, Robertson RP: Chronic Exposure of ${\beta}$TC-6 Cells to Supraphysiologic Concentrations of Glucose Decreases Binding of the RIPE3b1 Insulin Gene Transcription Activator. J Clin Invest 97:1041 -6, 1996 https://doi.org/10.1172/JCI118496
  7. Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP: Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A 96:10857-62, 1999
  8. Baynes JW: Role of oxidative stress in development of complications in diabetes. Diabetes 40:405-12, 1991 https://doi.org/10.2337/diabetes.40.4.405
  9. Kaneto H, Sharma A, Suzuma K, Laybutt DR, Bonner-Weir S, Weir GC: Induction of c-Myc Expression Suppresses Insulin Gene Transcription by Inhibiting NeuroD/ETA2 -mediated Transcriptional Activation. J Biol Chem 277:12998-3006, 2002 https://doi.org/10.1074/jbc.M111148200
  10. aneto H, Suzuma K, Sharma A, Bonner-Weir S, King GL, Weir GC: Involvement of Protein Kinase C ${\beta}$2 in c-myc Induction by High Glucose in Pancreatic ${\beta}$-Cells. J Biol Chem 277:3680-5, 2002 https://doi.org/10.1074/jbc.M109647200
  11. u XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M: Hyperglycemia -induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97:12222-6, 2000
  12. olff SP, Dean RT: Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J 245:243-50, 1987 https://doi.org/10.1042/bj2450243
  13. Hunt JV, Dean RT, Wolff SP: Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205-12, 1988 https://doi.org/10.1042/bj2560205
  14. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787-90, 2000 https://doi.org/10.1038/35008121
  15. Kajimoto Y, Watada H, Matsuoka T, Kaneto H, Fujitani Y, Miyazaki J, Yamasaki Y: Suppression of transcription factor PDX-1/IPF1/STF-1/IDX-1 causes no decrease in insulin mRNA in MIN6 cells. J Clin Invest 100:1840-6, 1997 https://doi.org/10.1172/JCI119712
  16. Olbrot M, Rud J, Moss LG, Sharma A: Identification of ${\beta}$-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci U S A 99:6737-42, 2002
  17. ataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H: MafA is a glucose-regulated and pancreatic ${\beta}$-Cell-specific transcriptional activator for the insulin gene. J Biol Chem 277:49903-10, 2002 https://doi.org/10.1074/jbc.M206796200
  18. Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, Stein R: Members of the large Maf transcription family regulate insulin gene transcription in islet ${\beta}$ Cells. Mol Cell Biol 23:6049 -62, 2003 https://doi.org/10.1128/MCB.23.17.6049-6062.2003
  19. Tiedge M, Lortz S, Drinkgern J, Lenzen S: Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733-42, 1997 https://doi.org/10.2337/diabetes.46.11.1733
  20. Welsh N, Margulis B, Borg LA, Wiklund HJ, Saldeen J, Flodstrom M, Mello MA, Andersson A, Pipeleers DG, Hellerstrom C, et al: Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1:806-20, 1995
  21. Hellman B, Idahl LA, Lernmark A, Sehlin J, Taljedal IB: The pancreatic beta-cell recognition of insulin secretagogues. Comparisons of glucose with glyceraldehyde isomers and dihydroxyacetone. Arch Biochem Biophys 162:448-57, 1974 https://doi.org/10.1016/0003-9861(74)90204-5
  22. Taniguchi S, Okinaka M, Tanigawa K, Miwa I: Difference in mechanism between glyceraldehyde- and glucose-induced insulin secretion from isolated rat pancreatic islets J Biochem(Tokyo) 127:289-95, 2000
  23. MacDonald MJ, Mertz RJ, Rana RS: Glyceraldehyde phosphate: an insulin secretagogue with possible effects on inositol phosphate formation in pancreatic islets. Arch Biochem Biophys 269:194-200, 1989 https://doi.org/10.1016/0003-9861(89)90100-8
  24. Alcazar O, Gine E, Qiu-Yue Z, Tamarit-Rodriguez J: The stimulation of insulin secretion by D-glyceraldehyde correlates with its rate of oxidation in islet cells. Biochem J 310:215-20, 1995 https://doi.org/10.1042/bj3100215
  25. Takahashi H, Tran PO, LeRoy E, Harmon JS, Tanaka Y, Robertson RP: D-Glyceraldehyde causes production of intracellular peroxide in pancreatic islets, oxidative stress, and defective beta cell function via non -mitochondrial pathways. J Biol Chem 279:37316-23, 2004 https://doi.org/10.1074/jbc.M403070200
  26. Lawrence MC, Bhatt HS, Watterson JM, Easom RA: Regulation of insulin gene transcription by a Ca(2+)-responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol Endocrinol 15:1758-67, 2001 https://doi.org/10.1210/me.15.10.1758
  27. 이기업, 임성희, 이문규, 이병두, 이홍규, 고창순, 민헌기: 총담관내 콜라겐분해 효소 주입법에 의한 백서 췌장 소도의 분리. 당뇨병 12:147-51, 1988
  28. 원규장, 은미정, 이시형, 김재홍, 오정현, 남상엽, 윤지성, 윤현대, 조인호, 이형우: Interleukin-1${\beta}$에 노출된 흰쥐 췌장소도의 nitric oxide생성, 인슐린 분비 및 heat shock protein 70 발현에 미치는 aminoguanidine의 효과. 당뇨병 25:273-85, 2001
  29. Halliwell B: Free radicals, antioxidants, and human disease: curiosity, cause, or consequence- Lancet 344:721-4, 1994 https://doi.org/10.1016/S0140-6736(94)92211-X
  30. Lenzen S, Drinkgern J, Tiedge M: Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463-6, 1996 https://doi.org/10.1016/0891-5849(96)02051-5
  31. 은미정, 원규장, 문준성, 문선중, 이지은, 윤지성, 천경아, 조인호, 이형우: INS-1 세포, HIT-T15 세포 및 백서 췌도 세포에서 포도당 독성의 원인으로서 산화 스트레스. 당뇨병 29:393-400, 2005
  32. Tanaka Y, Tran PO, Harmon J, Robertson RP: A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci U S A 99:12363-8, 2002
  33. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M: Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049-57, 2003 https://doi.org/10.1172/JCI18127