Selection of RAPD Primers for Efficient Fingerprinting in Roses

장미 Fingerprinting에 적합한 RAPD primer 선발

Kim, Ki-Jun;Choi, Jeong-Geun;Im, Ki-Byeong;Han, Tae-Ho;Ki, Kwang-Yeon
김기준;최정근;임기병;한태호;기광연

  • Published : 20060000

Abstract

This study was conducted to select random amplified polymorphic DNA (RAPD) primers for showing reliable polymorphism in roses. The rose genomic DNA concentration for polymerase chain reaction (PCR) was from 1 to 20 ng and annealing temperature was from 35 to 40℃. Taq polymerase concentration was efficient in 1.0 unit. Band patterns were distinguishable in 155 primers out of 191 primers and the 100 primers were reproducible. Twenty primers were selected with distinguishable and over 80% reproducible polymorphism on agarose gel. This study will support Korean rose breeding program and the fingerprints obtained in this study were uploaded on the internet site; http://hanth.jnu.ac.kr.

본 연구는 저렴하고 신속한 RAPD 방식을 채택하여 재현성이 높은 많은 수의 밴드수를 획득할 수 있는 프라이머를 선정하기 위하여 수행하였다. PCR 증폭에 필요한 적정 DNA 농도는 1~20ng이었으며, 35~40℃의 annealing 온도에서 밴드의 구분이 가장 확실하였다. Taq polymerase 농도는 1.0unit에서 효율이 가장 좋았다. RAPD용 프라이머 191개 중 155개 프라이머에서 밴드 증폭여부를 구분할 수 있었으며, 이 중 100개의 프라이머가 재현성이 있는 것으로 확인되었다. 재현성이 있는 프라이머는 총 밴드수 중 다형밴드 비율이 80% 이상인 것과 아가로스 젤 상에서 명확히 구분할 수 있는 밴드를 가진 프라이머 20개를 선발하였다. 본 연구를 통하여 생성된 DNA fingerprint 자료를 인터넷에 공개하여(http://hanth.jnu.ac.kr) 장미 유전연구를 통한 육종 프로그램을 직간접적으로 지원할 수 있을 것이다.

Keywords

References

  1. Debener, T. and L. Mattiesch. 1998. Effective pairwise combination of long primers for RAPD analyses in roses. Plant Breeding 117:147-151
  2. Debener, T. and L. Mattiesch. 1999. Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor. Appl. Genet. 99:891-899 https://doi.org/10.1007/s001220051310
  3. Debener, T., B. Christian, and M. Lore. 1996. RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Molecular Breeding 2:321-327 https://doi.org/10.1007/BF00437910
  4. Debener, T., M. Linde, and A. Dohm. 2004. The utility of molecular tools for rose breeding and genetics. Acta Hort. 630:29-42
  5. Frank, R.B. and G.B.M. Ana. 2001. RAPD data do not support a second centre of barley domestication in Morocco. Genet. Res. Crop Evol. 48:13-19 https://doi.org/10.1023/A:1011299021969
  6. Heo, S.J., S.B. Kwon, H.S. Byeon, S.S. Jeong, and K.O. Yoo. 2004. Intraspecific genetic relation of Wasabia japonica Matsum. base on RAPD analysis. Kor. J. Medicinal Crop Sci. 12:31-35
  7. Hong, S.M. and J.C. Koh. 2004. Morphological characteristics and genetic relationship by RAPD marker in Iris spp. Kor. J. Plant Biotechnol. 31:19-23 https://doi.org/10.5010/JPB.2004.31.1.019
  8. Hubbard, M., J. Delly, S. Rajapakse, A. Abbott, and R. Ballard. 1992. Restriction fragment length polymorphisms in rose and their use for cultivar identification. HortScience 27:172-173
  9. Kim, S.Y., Y.G. Sim, S.T. Kwon, and S.M. Oh. 2005. Genetic relationship among Ostericum koreaum Kitakawa collections by RAPD analysis. Kor. J. Medicinal Crop Sci. 13:109-113
  10. Matsumoto, S. and H. Fukui. 1996. Identification of rose cultivars and clonal plants by random amplified polymorphic DNA. Sci. Hort. 67:49-54 https://doi.org/10.1016/S0304-4238(96)00951-X
  11. Millan, T., F. Osuna, S. Cobos, A.M. Torres, and J.I. Cubero. 1995. Using RAPDs to sutdy phylogenetic relationships in Rosa. Springer-Verlag 92:273-277
  12. Park, Y.C., M.S. Seong, S.R. Kim, and S.W. Song. 2005. RAPD-mediated genetic relationship analysis of Cymbidium. J. Kor. Flower Res. Soc. 13:25-30
  13. Raghunathachari, P., V.K. Khanna, U.S. Singh, and N.K. Singh. 2000. RAPD analysis of genetic variability in Indian scented rice germplasm (Oryza sativa L.). Current Sci. 79:994-998
  14. Roverts, V.A. 2003. Encyclopedia of rose science 1. Elsevier Academic Press. Oxford
  15. Torres, A.M., T. Millan, and J.I. Cubero. 1993. Identifying rose cultivars using random amplified polymorphic DNA markers. HortScience 28:333-334
  16. Yan, Z.F., C. Denneboom, A. Hattendorf, O. Dolstra, T. Debener, P. Stam, and P.B. Visser. 2005. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor. Appl. Genet. 110:766-777 https://doi.org/10.1007/s00122-004-1903-6