Sorption properties of 152Eu and 241Am in geological materials: Eu as an analogue for monitoring the Am behaviour in heterogeneous geological environments

Lee, Seung-Gu;Lee, Kil-Yong;Cho, Soo-Young;Yoon, Yoon-Yeol;Kim, Yong-Je

  • Published : 20060000

Abstract

In order to confirm the similar behavior of Eu andAm in heterogeneous geological materials, we carried out thebatch experiments for determining the sorption property of radi-onuclides, 152Eu and 241Am. We used four different types of coreand andestic tuff, and selected two samples per each lithology, oneof which is fracture-bearing and another is fracture-free. Except formetabasites, rock samples of each type are similar in their compo-sitions. We calculated sorption ratios of two radionuclides from theexperimental results. Biotite gneiss and tuff had similar sorptiontrends for 152Eu and 241Am regardless of the existence of fractures,whereas two metabasite samples showed very different sorptionproperties. Such difference in the sorption trends revealed a closerelationship with chemical compositions of the host rocks. Never-theless, 152Eu and 241samples with variable contact times regardless of petrography andpH variations, and particularly, the sorption trends of 152Eu and241Am in the metabasites were similar. This observation sugeststhat Eu and Am have similar sorption properties on geologicalmaterials. Therefore, Eu can be used as a useful analogue of Amin all kinds of geological environments regardless of variations inlithology and pH of groundwater. In addition, sorption ratios of152Eu and 241Am are correlated with the contents of P2O5 and TiO2,suggesting that the chemical components such as P2O5 and TiO2might be important for deciphering the interaction betwen theradionuclide and groundwater.

Keywords

References

  1. Berry, J.A. and Bond, K.A., 1992, Studies of the Extent of Surface Diffusion in the Migration of Radionuclides through Geological Materials. Radiochimica Acta, 58/59, 329-335
  2. Buddemeier, R.W., Finkel, R.C., Marsh, K.V., Ruggieri, M.R., Rego, J.H. and Silva, R.J., 1991, Hydrology and Radionuclide at the Nevada Test Site. Radiochimica Acta, 52/53, 275−282
  3. Coppin, G.R., 1983, Comparison of the solution chemistry of the actinides and the lanthanides. Journal of Less-Common Metals, 93, 232−230
  4. Curti, E., 1999, Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Applied Geochemistry, 14, 433−445
  5. Degueldre, C. and Wernli, B., 1993, Association Behavior of $^{241}Am$(III) on $SiO_2$(amorphous) and $SiO_2$(quartz) Colloids. Journal of Environmental Radioactivity, 20, 151−167
  6. Derry, L.A. and Jacobsen, S.B., 1990, The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica Cosmochimica Acta, 49, 1955−1963
  7. Dymek, R.F. and Klein, C., 1988, Chemistry, petrography and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal rocks, West Greenland, Precambrian Research, 39, 247−302 https://doi.org/10.1016/0301-9268(88)90022-8
  8. Emrén, A.T., 1993, The influence of heterogeneous rock chemistry on the sorption of radionuclides in flowing groundwater. Journal of Contaminant Hydrology, 13, 131−141
  9. Fred, M., 1967, in Lanthanide/Acitinide Chemistry, vol. 71, Advances in Chemistry Series, American Chemical Society, Washington, pp. 200−201
  10. Guiterrez, M.G., Bidoglio, G., Avogadro, A., Mingarro, E. and D'Alessandro, M., 1991, Experimental Investigations of radionuclide transport through cored granite samples. Radiochimica Acta, 52/53, 213−217
  11. Heath, M.J., Montoto, M., Rodriguez Rey, A., Ruiz de Argandoña, V.G. and Menendez, B., 1992, Rock Matrix Diffusion as a Mechanism of Radionuclide Retardation: A Natural Analogue Study of El Berrocal Granite, Spain. Radiochimica Acta, 58/59, 379−384
  12. Henderson, P., 1990, Inorganic Geochemistry. Pergamon Press, Oxford- New York, 353p
  13. Hilton, J., Nolan, L. and Jarvis, K.E., 1997, Concentrations of stable isotopes of cesium and strontium in freshwaters in northern England and their efforts on estimates of sorption coefficients (Kd). Geochimica Cosmochimica Acta, 61, 1115−1124
  14. Ionova, G., Madic, C. and Guillaumont, R., 1997, Covalency Effects in the Standard Enthalpies of Formation of Trivalent Lanthanide and Actinide Halides. Radiochimica Acta, 78, 83−90
  15. Johannesson, K., Stetzenbach, K.J., Hodge, V.H. and Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth and Planetary Science Letters, 139, 305−319
  16. Johansson, B. and Rosengren, A., 1975, Interpolation scheme for the cohesive energies for the lanthanides and actinides. Physical Review, B11, 1367−1373
  17. Kim, M.A., Panak, P.J., Yun, J.I., Kim, J.I., Klenze, R. and Köhler, K., 2003, Interaction of actinides with aluminosilicate colloids in statunasscendi. Part I; generation and characterization on actinide (III)-pseudocolloids. Colloidal Surface, A 216, 97−108
  18. Konta, J., 1995, Clay and man: Clay raw materials in the service of man. Applied Clay Science, 10, 275−335
  19. Krauskopf, K.B., 1986a, Aqueous geochemistry of radioactive waste disposal. Applied Geochemistry, 1, 15−23
  20. Krauskopf, K.B., 1986b, Thorium and rare earth metals as analogs for actinide elements. Chemical Geology, 55, 323−335
  21. Lee, K.Y., Yoon, Y.Y., Lee, S.G., Lee, D.H., Kim, Y. and Woo, N.C., 2001, Sorption of radionuclides on the container wall during batch migration studies. Journal of Radioanalytical Nuclear Chemistry, 249, 271−278
  22. Lee, S.G., Lee, D.H., Kim, Y., Chae, B.G., Kim, W.Y. and Woo, N.C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Applied Geochemistry, 18, 135−143 https://doi.org/10.1016/S0883-2927(02)00071-9
  23. Lee, S.G., Kim, Y., Chae, B.G., Koh, D.C. and Kim, K.H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Applied Geochemistry, 19, 1711−1725
  24. Lipin, B.R. and McKay, G.A., 1989, Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy, vol. 21, Mineralogical Society of America, 348pp
  25. Masuda, A. Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochimica Cosmochimica Acta, 37, 239−248 https://doi.org/10.1016/0016-7037(73)90131-2
  26. McCarthy, J.F., Sanford, W.E. and Stafford, P.L., 1998, Lanthanide Field Tracers Demonstrate Enhanced Transport of Transuranic Radionuclides by Natural Organic Matter. Environmental Science and Technology, 32, 3901−3906
  27. Meece, D.E. and Benninger, L.K., 1993, The coprecipitation of Pu and other radionuclide with $CaCO_3$. Geochimica Cosmochimica Acta, 57, 1447−1458
  28. Metz, V., Kienzler, B. and SchuBler, W., 2003, Geochemical evaluation of different groundwater-host rock systems for radioactive waste disposal. Journal of Contaminant Hydrology, 61, 265−279 https://doi.org/10.1016/S0169-7722(02)00130-4
  29. Moeller, T., 1976, The Lanthanides. In: Comprehensive Inorganic Chemistry (J.C. Bailar et al. ed), 1−101, Pergamon Press, Oxford-New York-Toronto-Sydney-Braunschweig
  30. Nagasaki, S. Tanaka, S. and Suzuki, A., 1997, Interfacial behavior of actinides with colloids in the geosphere. Journal of Nuclear Materials, 248, 323−327
  31. O'Connor, J. T., 1965, A classification for quartz-rich igneous rocks based on feldspar ratio. United States Geological Survey Professional Paper, 525B, 79−84
  32. Petit, J-C., 1991, Natural Analogue Aspects of Radionuclide Transport in the Geosphere. Radiochimica Acta, 52/53, 337−340
  33. Rai, D., Strickert, R.G., Moore, D.A. and Serne, R.J., 1981, Influence of an americium solid phase on americium concentrations in solutions. Geochimica Cosmochimica Acta, 45, 2257−2265
  34. Rizkalla, E.N. and Choppin, G.R., 1991, Chap. 103 in Handbook on the Physics and chemistry of Rare Earths, Vol. 15, Gshneidner, K. A. Jr. and Eyring, L. Eds., Elsevier, New York
  35. Runde, W., Meinrath, G. and Kim, J.I., 1992, A Study of Solid-Liquid Phase Equilibria of Trivalent Lanthanide and Actnide Ions in Carbonate Systems. Radiochimica Acta, 58/59, 93−100
  36. Sakuragi, T., Sato, S., Kozaki, T., Mitsugashira, T., Hara, M. and Suzuki, Y., 2004, Am(III) and Eu(III) uptake on hematite in the presence of humic acid. Radiochimica Acta, 92, 697−702
  37. Shannon, R.D., 1976, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalkogenides. Acta Crystallogrography, A32, 751−767
  38. Spasennykh, M.Yu. (1997) Radionuclide Migration in Aquifer Rocks: Effect of Water-Rock Interaction. Geochemistry International, 35, 181−187
  39. Stipp, S. L. S., Lakstanov, L. Z., Jensen, J. T. and Baker, J. A., 2003, Preliminary results from coprecipitation experiments and observations with surface-sensitive techniques. Journal of Contaminant Hydrology, 61, 33−43 https://doi.org/10.1016/S0169-7722(02)00111-0
  40. Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. and Tominaga, T., 1998, Characterization of Eu(III) Species Sorbed on Silica and Montmorillonite by Laser-Induced Fluorescence Spectroscopy. Radiochimica Acta, 82, 227−232
  41. Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y. and Shimizu, H., 2002, W- and M-type tetrad effects in REE patterns for waterrock systems in the Tono uranium deposits, central Japan. Chemical Geology, 184, 311−335 https://doi.org/10.1016/S0009-2541(01)00388-6
  42. Taylor, S.R. and McLennan, S.M., 1985, The continental Crust: Its Composition and Evolution. Blackwell. 312p
  43. Wood, S. A., 1990, The aqueous geochemistry of the rare earth elements and Yttrium. 1. Review of the available low-temperature data for inorganic complexes and inorganic REE speciation in natural waters. Chemical Geology, 82, 159−186 https://doi.org/10.1016/0009-2541(90)90080-Q
  44. Xu, S. and Wörman, A., 1999, Implications of sorption kinetics to radionuclide migration in fractured rock. Water Resource Research, 35, 3429−3440