A Study on the Sensitivity of the Simulations of Typhoon Saomai(2000) to the Cumulus Parameterization and Planetary Boundary Layer Schemes in MM5

Shim, Jae-Kwan;Hong, Song-You Hong

  • Published : 20060000

Abstract

The objective of this paper is to investigate in detail the sensitivity of a simulation of a tropical cyclone to the cumulus parameterization (CP) and planetary boundary layer (BL) processes by using the Pennsylvania State University-National Center for Atmospheric Research Fifth-Generation Mesoscale Model (MM5). Tests were conducted to determine the sensitivity of the simulation of a typhoon to the CPs, including the Betts-Miller, Grell, Kuo-Anthes, and Kain-Fritsch schemes, and two different planetary boundary layer schemes with a non-local approach, the Medium-Range Forecast (MRF) scheme, and a local approach, the National Center for Environmental Prediction’s Eta model (ETA BL) scheme. Typhoon Saomai that originated in the northern Pacific and hit the Korean peninsula in September 2000 was selected for this study. In general, the track of a simulated tropical cyclone is highly sensitive to the choice of both the CP and BL schemes, whereas its intensity and structure are more sensitive to the choice of the BL scheme alone. The intensity, surface fluxes, and structure of the modeled Saomai can be classified into two groups according to the BL scheme used. Overall, the MRF BL scheme realistically reproduces the intensity and structure of the tropical cyclone, whereas the internal structure of the cyclone is less organized when the ETA BL scheme is employed, except for the Kuo CP scheme that is insensitive to the choice of the BL processes.

Keywords

References

  1. Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Wea. Rev., 105, 270-286 https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
  2. Baik, J.-J., M. Demaria and S. Raman, 1990: Tropical cyclone simulations with the Betts comvective adjustment scheme. PartII: Sensitivity experiments. Mon. Wea. Rev., 118, 529-541 https://doi.org/10.1175/1520-0493(1990)118<0529:TCSWTB>2.0.CO;2
  3. Betts, A. K. and M. J. Miller, 1993: The Betts-Miller scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., AMS, 246 pp
  4. Braun, S. A. and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961 https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
  5. Braun, S. A., 2002: A cloud-resolving simulation of hurricane Bob (1991): Strom structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573-1592 https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2
  6. Bright, D. R. and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of BL turbulence parameterization in MM5. Wea. Forecasting. 17, 99-14 https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2
  7. Davis, C. and L. F. Bosart, 2002: Numerical simulations of the genesis of hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100-1124 https://doi.org/10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2
  8. Dudiha, J., 1989: Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077- 3107 https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  9. Dudiha, J., 1993: A nonhydrostatic version of the Penn Stat-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493-1513 https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  10. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. PartI: Steady-state maintenance. J. Atmos. Sci., 43, 585-604 https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
  11. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787 https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  12. Grell, G. A., J. Dudhia and D. R. Stauffer, 1994: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+ STR, 138 pp. [Available from National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000.]
  13. Hong, S.-Y. and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339 https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  14. Janjic, Z. I., 1994: The step mountain eta coordinate model : Further development of the convection, viscous sublayer, and turbulent closure scheme. Mon. Wea. Rev., 122, 927-945 https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  15. Kain, J.S. and J.M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of cumulus convection in numerical models. Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165-170
  16. Karyampudi, V. M., G. S. Lai and J. Manobianco, 1998: Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of hurricane Florence (1998). Mon. Wea. Rev., 126, 3077-3101 https://doi.org/10.1175/1520-0493(1998)126<3077:IOICRA>2.0.CO;2
  17. Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240 https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
  18. Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initilization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030-2045 https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
  19. Liu, Y., D. L. Zhang and M. K. Yau, 1997: A multiscale numerical study of hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093 https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2
  20. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated- k model for the longwave. J. Geophys. Res., 102, 16663-16682 https://doi.org/10.1029/97JD00237
  21. Nagata, M., L. Leslie, H. Kamahori, R. Nomura, H. Mino, Y. Kurihara, E. Rogers, R. L. Elsberry, B. K. Basu, A. Buzzi, J. Calvo, M. Desgagne, M. D'Isidoro, S. Y. Hong, J. Katzfey, D. Majewski, P. Malguzzi, J. McGregor, A. Murata, J. Nachamkin, M. Roch, and C. Wilson, 2001: A mesoscale model intercomparison: A case of explosive development of a tropical cyclone (COMPARE III). J. Meteor. Soc. Japan, 79, 999-1033 https://doi.org/10.2151/jmsj.79.999
  22. Puri, K. and M. J. Miller, 1990: Sensitivity of ECMWF analyses-forecasts of tropical cyclones to cumulus parameterization. Mon. Wea. Rev., 118, 1709-1741 https://doi.org/10.1175/1520-0493(1990)118<1709:SOEAFO>2.0.CO;2
  23. Rotunno, R. and K. A. Emanuel, 1987: An Air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561 https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
  24. Wang, W. and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252-278 https://doi.org/10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
  25. Wang, Y., 2002: An Explicit Simulation of Tropical Cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model Refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022-3036 https://doi.org/10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2
  26. Zhang, D. L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594-1609 https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2
  27. Zhang, D. L., Y. Liu and M. K. Yau, 2000: A multiscale numerical study of hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772-3788 https://doi.org/10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2