Ferromagnetism Above Room Temperature in Cr-Doped AlN Films

Song, Young-Yeal;Yu, Seong-Cho;Lim, K. S;Quang, P. H;Yoo, Y. G.

  • Published : 20060000

Abstract

Chromium-doped AlN .lms were prepared for a wide range of deposition parameters. The .lms were deposited on Si, Corning glass, and quartz substrates by magnetron sputtering. The single- phase .lms were obtained at an argon-nitrogen pressure of 6 mTorr for a substrate temperature range of 300 { 400 ±C. The .lms had typical thicknesses in the range of 200 { 1600 nm. The X-ray diraction pattern indicated a pure Cr-doped AlN phase. The concentration of Cr was deter- mined by using energy dispersive X-ray spectrometry (EDS) and X-ray photoemission spectrometry (XPS). The magnetization of the .lms grown on glass substrates was measured by using an alter- nating gradient magnetometer (AGM) system. The AGM data gave hysteresis loops with a small coercive force and a saturation magnetization, Ms of 0.1 emu/cm3. The Ms value is consistent with the literature values. The ferromagnetic resonance (FMR) spectra were measured from room temperature to 500 K at 9.2 GHz with the static .eld parallel to the .lm plane. The ferromagnetism was detected even at 500 K, which was the maximum temperature of our system. The optical ab- sorption gap determined by using Tsuc's method decreased from 6.18 eV to 4.74 eV with increasing Cr content from x = 0 to 0.25. This behavior can be attributed to the broadening of the impurity band, which is formed by the hybridization of p-d orbital. Transport properties were measured as a function of temperature from 77 K to 300 K by using the four-probe method. The data points satisfy the exponential law for variable range hopping in Cr doped AlN .lms.

Keywords

References

  1. H. Ohno, Science 281, 951 (1998) https://doi.org/10.1126/science.281.5379.951
  2. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D.D. Awschalom, Nature (London) 407, 790 (1999)
  3. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani, Nature (London) 408, 944 (2000) https://doi.org/10.1038/35050040
  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Fer- rand, Science 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  5. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson and G. A. Gehring, Nat. Mater. 2, 673 (2003) https://doi.org/10.1038/nmat984
  6. M. Diaconu, H. Schmidt, H. Hochmutha, M. Lorenza, G. Benndorf, J. Lenzner, D. Spemann, A. Setzer, K. W. Nielsen, P. Esquinazi and M. Grundmann, Thin Solid Films 486, 117 (2005) https://doi.org/10.1016/j.tsf.2004.11.211
  7. M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair, Appl. Phys. Lett. 79, 3473 (2001) https://doi.org/10.1063/1.1419231
  8. H. C. Jeong, T. W. Kang, T. W. Kim, Y. H. Cho and C. M. Lee, J. Korean Phys. Soc. 47, S477 (2005)
  9. Jun Zhang, X. Z. Li, B. Xu and D. J. Sellmyer, Appl. Phys. Lett. 86, 212504 (2005) https://doi.org/10.1063/1.1940131
  10. R. Frazier, G. Thaler, M. Overberg, B. Gila, C. R. Aber- nathy and S. J. Pearton, Appl. Phys. Lett. 83, 1758 (2003) https://doi.org/10.1063/1.1604465
  11. S. G. Yang, A. B. Pakhomov, S. T. Hung and C. Y. Wong, Appl. Phys. Lett. 81, 2418 (2002) https://doi.org/10.1063/1.1509475
  12. J. Zhang, B. Xu and D. J. Sellmyer, Appl. Phys. Lett. 86, 212504 (2005) https://doi.org/10.1063/1.1940131
  13. F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Jpn. Appl. Phys. 26, 1555 (1987) https://doi.org/10.1143/JJAP.26.1555
  14. S. T. Wu, H. X. Liu, L. Gu, R. K. Singh, L. Budd, M. Schilfgarde, M. R. McCartney, D. J. Smith and N. Newman, Appl. Phys. Lett. 82, 3047 (2003) https://doi.org/10.1063/1.1570521
  15. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees, Phys. Rev. B 62, 4793 (2000)
  16. E. I. Rashba, Phys. Rev. B 62, 16267 (2000) https://doi.org/10.1103/PhysRevB.62.R16267
  17. J. Tauc, R. Grigorovici and A. Vancu, Physica Status Solidi 15, 627 (1966) https://doi.org/10.1002/pssb.19660150224
  18. D. Gall, C. S. Shin, R. T. Haasch, I. Petrov and J. E. Greene, J.Appl. Phys. 91, 5882 (2002) https://doi.org/10.1063/1.1466528
  19. P. T. Chiu, A. J. Blatter, S. J. May and B. W. Wessels, Physica B 344, 379 (2004) https://doi.org/10.1016/j.physb.2003.10.029
  20. M. Jain, L. Kronik and J. R. Chelikowsky, Phys. Rev. B 64, 245205 (2001) https://doi.org/10.1103/PhysRevB.64.245205
  21. M. Hashimoto, Y. K. Zhou, M. Kanamura, H. Katayama-Yoshida and H. Ahashi, J. Crystal Growth 251, 327 (2003) https://doi.org/10.1016/S0022-0248(02)02276-5
  22. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, 485 (2001) https://doi.org/10.1143/JJAP.40.L485
  23. B. Sanyal, O. Bengone and S. Mirbt, Phys. Rev. B 68, 2052 (2003)
  24. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975) https://doi.org/10.1088/0022-3719/8/4/003