Effect of Surface Passivants on the Photoluminescence from Si Nanocrystals

Yang, Moon-Seung;Kim, Kyung Joong;Shin, Jung H.

  • Published : 20060000

Abstract

Room-temperature visible photoluminescence (PL) was observed in silicon oxide (SiOx), silicon oxynitride (SiOxNy), and silicon nitride (SiNx) films grown by ion beam sputter deposition. The amounts of oxygen and nitrogen in the films were controlled by using in-situ X-ray photoelectron spectroscopy (XPS). In the SiOx and the SiNx thin films, the PL energies showed blue-shifts due to the quantum-confinement effect with the decreased excess Si and the PL intensities showed maximum values near x = 1.6 and x = 1.1, respectively. We found another large blue-shift of about 0.6 eV in the PL energy between the SiNx and the SiOx films with similar excess Si due to surface passivation of Si nanocrystals. The increase of PL energy from SiOx through SiOxNy to SiNx can be a direct evidence for a surface passivation effect, which is in agreement with the theoretical prediction. These results indicate that control of the nc-Si size and the surface passivant material are key parameters for enhancing the visible luminescence for a Si-based photonic device

Keywords

References

  1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990) https://doi.org/10.1063/1.103561
  2. L. Pavesi, S. Gaponenko and L. Dal Negro, Toward the First Silicon Laser (Kluwer Academic Publisher, Dordrecht, 2002)
  3. G. Franzo A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di. Sefano, P. G. Fallica and F. Priolo, Appl. Phys. A 74, 1 (2002) https://doi.org/10.1007/s003390101019
  4. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, Nature 408, 440 (2000) https://doi.org/10.1038/35044012
  5. H. Han, S. Seo and J. H. Shin, Appl. Phys. Lett. 79, 4568 (2001) https://doi.org/10.1063/1.1419035
  6. S. H. Hong, S. Kim, S. H. Choi, K. J. Lee, H. S. Lee, K. J. Kim and D. W Moon, J. Korean Phys. Soc. 45, 116 (2004)
  7. F. Iacona, G. Franzo and C. Spinella, J. Appl. Phys. 87, 1295 (2002) https://doi.org/10.1063/1.372013
  8. J. S. Bae, S. H. Choi, K. J. Kim and D. W. Moon, J. Korean Phys. Soc. 43, 557 (2003)
  9. Y. Sun, S. Y. Seo, J. H. Shin, T. G. Kim, C. N. Whang and J. H. Song, J. Korean Phys. Soc. 39, S83 (2001)
  10. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan and C. Delerue, Phys. Rev. Lett. 8, 197 (1999)
  11. A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, J. Am. Chem. Soc. 125, 2786 (2003) https://doi.org/10.1021/ja0293296
  12. N. M. Park, C. J. Choi, T. Y. Seong and S. J. Park, Phys. Rev. Lett. 86, 1355 (2001) https://doi.org/10.1103/PhysRevLett.86.1355
  13. H. Kato, N. Kashio, Y. Ohki, K. S. Seol and T. Noma, J. Appl. Phys. 93, 239 (2003) https://doi.org/10.1063/1.1529292
  14. Y. Q. Wang, Y. G. Wang, L. Cao and Z. X. Cao, Appl. Phys. Lett. 83, 3474 (2003) https://doi.org/10.1063/1.1621462
  15. V. A. Gritsenko, K. S. Zhuravlev, A. D. Milov, HeiWong, R. W. M. Kwok and J. B. Xu, Thin Solid Films 353, 20 (1999) https://doi.org/10.1016/S0040-6090(99)00180-7
  16. M. Molinari, H. Rinnert, M. Vergnat and P. Weisbecker, Mat. Sci. Eng B 101, 186 (2003) https://doi.org/10.1016/S0921-5107(02)00715-8
  17. L. Wang, Z. Ma, X. Huang, Z. Li, J. Li, Y. Bao, J. Xu, W. Li and K. Chen, Solid State Com. 117, 239 (2001) https://doi.org/10.1016/S0038-1098(00)00455-5
  18. L. Torrison, J. Tolle, D. J. Smith, C. Poweleit, J. Menendez, M. M. Mitan, T. L. Alford and J. Kouvetakis, J. Appl. Phys. 92, 7475 (2002) https://doi.org/10.1063/1.1525046
  19. Y. J. Park, T. K. Lee, C. H. Lee and E. K. Kim, J. Korean Phys. Soc. 44, 700 (2004) https://doi.org/10.3938/jkps.44.700
  20. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma and A. Polman, Appl. Phys. Lett. 69, 2033 (1996) https://doi.org/10.1063/1.116870
  21. S. Cheylan and R. G. Elliman, Appl. Phys. Lett. 78, 1225 (2001) https://doi.org/10.1063/1.1338492
  22. A. Puzder, A. J. Williamson, Jeffrey C. Grossman and G. Galli, J. Chem. Phys. 117, 6721 (2002) https://doi.org/10.1063/1.1504707