Structural and Optical Properties of ZnO Films Grown on SapphireSubstrates Subjected to Substrate Temperature

Cho, Shin-Ho

  • Published : 20060000

Abstract

We present the e ect of substrate temperature on the structural and the optical properties of ZnO films grown on sapphire substrates by using pulsed laser deposition. Growing at higher substrate temperature results in an increase in the surface roughness and the size of the grains. The optimum c-axis orientation of the ZnO films occurs at a substrate temperature of 700 C. The decay time, obtained from a least-squares fit of the data to a single exponential, shows a rapid increase in the substrate temperature from 400 C to 500 C and falls gradually as the substrate temperature approaches 700 C. These results are due to variations in the nature of defects and strain with changing substrate temperature.

Keywords

References

  1. T. M. Barnes, J. Leaf, C. Fry and C. A.Wolden, J. Cryst. Growth 274, 412 (2005) https://doi.org/10.1016/j.jcrysgro.2004.10.015
  2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett. 70, 2230 (1997) https://doi.org/10.1063/1.118824
  3. Y. R. Ryu, W. J. Kim and H. W. White, J. Cryst. Growth 219, 419 (2000) https://doi.org/10.1016/S0022-0248(00)00731-4
  4. D. K. Kim and C. B. Park, J. Korean Phys. Soc. 47, 1006 (2005)
  5. X. L. Guo, J. H. Choi, H. Tabata and T. Kawai, Jpn. J. Appl. Phys. 40, L177 (2001) https://doi.org/10.1143/JJAP.40.L177
  6. S. C. Jain, M. Willander, J. Narayan and R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000) https://doi.org/10.1063/1.371971
  7. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, Appl. Phys. Lett. 76, 3549 (2000) https://doi.org/10.1063/1.126703
  8. D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff and R. J. Molnar, J. Appl. Phys. Lett. 88, 1460 (2000)
  9. K. Y. Bang, D. K. Hwang, M. C. Jeong, K. S. Sohn and J. M. Myoung, Solid State Comm. 126, 623 (2003) https://doi.org/10.1016/S0038-1098(03)00297-7
  10. S. Hong, T. Joo, W. I. Park, Y. H. Jun and G. C. Yi, Appl. Phys. Lett. 83, 4157 (2003) https://doi.org/10.1063/1.1627472
  11. S. Cho, E. K. Kim and S. K. Min, J. Korean Phys. Soc. 32, 584 (1998)
  12. H. W. Kim and N. H. Kim, Mater. Sci. Eng. B 103, 297 (2003) https://doi.org/10.1016/S0921-5107(03)00281-2
  13. C. S. Son, S. M. Kim, Y. H. Kim, S. I. Kim, Y. T. Kim, K. H. Yoon and I. H. Choi, J. Korean Phys. Soc. 45, S685 (2004)
  14. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong and T. Joo, Appl. Phys. Lett. 80, 1924 (2002) https://doi.org/10.1063/1.1461051
  15. Y. Chen, F. Jiang, L. Wang, C. Zheng, J. Dai, Y. Pu and W. Fang, J. Cryst. Growth 219, 419 (2000) https://doi.org/10.1016/S0022-0248(00)00731-4
  16. D. W. Hamby, D. A. Lucca, M. J. Klopfstein and G. Cantwell, J. Appl. Phys. 93, 3214 (2003) https://doi.org/10.1063/1.1545157
  17. B. Guo, Z. Ye and K. S. Wong, J. Cryst. Growth 253, 252 (2003) https://doi.org/10.1016/S0022-0248(03)01006-6