Adsorption Stnlctures of Benzene and Pyridine on a $Si(5\;5\;12)-2{\times}1$

$Si(5\;5\;12)-2{\times}1$ 표면에 벤젠과 피리딘의 결함구조

  • Jang S. H. (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Oh S. (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Hahn J. R. (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Jeong H. (Department of Physics and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Jeong S. (Department of Physics and Institute of Photonics and Information Technology, Chonbuk National University)
  • Published : 2006.01.01

Abstract

We investigated the adsorption of benzene and pyridine on $Si(5\;5\;12)-2\times1$ at 80 K by using variable-low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The benzene molecule most strongly binds to two adatoms on the D3 and D2 units in a tilted butterfly configuration, which consists of $di-\sigma$ bonds between C atoms and Si adatoms and two C=C double bonds in the benzene molecule Pyridine molecules interact with adatom(s) on the D2 and D3 units through both Si-N dative bonding and $di-\sigma$ bonds. The dative bonding through the lone pair electrons of N atom produces a vertical configuration (pyridine-like), which is more stable than $di-\sigma$ bonds $Di-\sigma$ bonds can be formed either through Si-N1 and Si-C4 or Si-C2 and Si-C5.

[ $Si(5\;5\;12)-2{\times}1$ ] 표면에 벤젠과 피리딘의 흡착구조를 80K 온도에서 주사 터널링 현미경과 density functional theory 계산 방법으로 연구했다. 벤젠 분자는 기울어진 butterfly 형태로 $Si(5\;5\;12)-2\times1$의 D2, D3 유닛에 두 개의 adatom과 강하게 결합된다. 흡착 벤젠 분자에 두 개의 C=C 이중 결합이 있으며 탄소와 Si adatom 사이에 $di-\sigma$ 결합이 있다. 피리딘 분자는 Si-N dative 결합 또는 $di-\sigma$ 형태로 D2와 D3 유닛의 adatom과 결합을 한다 질소 원자의 홀전자쌍에 의해 결합된 dative 결합은 수직 형태의 구조를 띠며 $di-\sigma$ 결합보다 더 안정한 것으로 나타났다. $Di-\sigma$ 결합은 Si-C2와 Si-C5 또는 Si-Nl와 Si-C4으로 형성된다.

Keywords

References

  1. N. H. Waltenburg and J. T. Jr. Yates, Chem. Rev. 95, 1589 (1995) https://doi.org/10.1021/cr00037a600
  2. R. A. Wolkow, Annu. Rev. Phys. Chem. 50, 413 (1999) https://doi.org/10.1146/annurev.physchem.50.1.413
  3. R. J. Hamers, J. S. Hovis, S. Lee, H. Liu, and J. Shan, J. Phys. Chem. B 101, 1498 (1997) https://doi.org/10.1021/jp962853c
  4. J. S. Hovis and R. J. Hamers, J. Phys. Chem. B 102, 687 (1998) https://doi.org/10.1021/jp9727308
  5. L. Clemen, R. M. Wallace, P. A. Taylor, M. J. Dresser, W. J. Choyke, W. H. Weinberg, and J. T. Jr. Yates, Surf. Sci. 268, 205 (1992) https://doi.org/10.1016/0039-6028(92)90963-7
  6. P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke, and J. T. Jr. Yates, J. Am. Chem. Soc. 114, 6754 (1992) https://doi.org/10.1021/ja00043a020
  7. C. C. Cheng, R. M. Wallace, P. A. Taylor, W. J. Choyke, and J. T. Jr. Yates, J. Appl. Phys. 67, 3693 (1990) https://doi.org/10.1063/1.345326
  8. H. Liu and R. J. Hamers, J. Am. Chem. Soc. 119, 7593 (1997) https://doi.org/10.1021/ja971452n
  9. G. P. Lopinski, D. J. Moffatt, and R. A. Wolkow, Chem. Phys. Lett. 282, 305 (1998) https://doi.org/10.1016/S0009-2614(97)01317-1
  10. R. A. Wolkow, G. P. Lopinski, and D. J. Moffatt, Surf. Sci. 416, L1107 (1998) https://doi.org/10.1016/S0039-6028(98)00629-3
  11. S. K. Coulter, I. S. Hovis, M. D. Ellison, and R. J. Hamers, J. Vac. Sci. Technol. A 18, 1965 (2000) https://doi.org/10.1116/1.582455
  12. M. J. Kong, A. V. Teplyakov, J. G. Lyubovitsky, and S. F. Bent, Surf. Sci. 411, 286 (1998) https://doi.org/10.1016/S0039-6028(98)00336-7
  13. W. Hofer, A. J. Fisher, G. P. Lopinski, and R. A. Wolkow, Phys. Rev. B 63, 085314 (2001) https://doi.org/10.1103/PhysRevB.63.085314
  14. P. L. Silvestrelli, F. Ancilotto, and F. Toigo, Phys. Rev. B 62, 1956 (2000)
  15. S. Alavi, et al., Phys. Rev. Lett. 85, 5372 (2000) https://doi.org/10.1103/PhysRevLett.85.5372
  16. B. Borovsky, M. Krueger, and E. Ganz, J. Vac. Sci. Technol. B 17, 7 (1999) https://doi.org/10.1116/1.590510
  17. M. P. Schwartz, M. D. Ellison, S. K. Coulter, J. S. Hovis, and R. J. Hamers, J. Am. Chem. Soc. 122, 8529 (2000) https://doi.org/10.1021/ja000928r
  18. M. D. Ellison and R. J. Hamers, J. Phys. Chem. D 103, 6243 (1999) https://doi.org/10.1021/jp990010q
  19. A. A. Baski, S. C. Erwin, and L. J. Whitman, Science 269, 1556 (1995) https://doi.org/10.1126/science.269.5230.1556
  20. Y. Peng, H. Minoda, Y. Tanishiro, and K. Yagi, Surf. Sci. 493, 508 (2001) https://doi.org/10.1016/S0039-6028(01)01260-2
  21. A. A. Baski, S. C. Erwin, and L. J. Whitman, Surf. Sci. 392, 69 (1997) https://doi.org/10.1016/S0039-6028(97)00499-8
  22. T. Suzuki, H. Minoda, Y. Tanishiro, and K. Yagi, Surf. Sci. 348, 335 (1996) https://doi.org/10.1016/0039-6028(95)01034-3
  23. Y. Peng, T. Suzuki, H. Minoda, Y. Tanishiro, and K. Yagi, Surf. Sci. 493, 299 (2001)
  24. S. Jeong, J. Jeong, S. Cho, and J. M. Seo, Surf. Sci. 557, 183 (2004) https://doi.org/10.1016/j.susc.2004.03.040
  25. S. Cho and J. M. Seo, Surf. Sci. 565, 14 (2004) https://doi.org/10.1016/j.susc.2004.07.004
  26. The STM is a variation of the one described in B. C. Stipe, M. A. Razaei, and W. Ho, Rev. Sci. Instrum 70, 137 (1999) https://doi.org/10.1063/1.1149555
  27. L. J. Lauhon and W. Ho, Rev. Sci. Instrum 72, 216 (2001) https://doi.org/10.1063/1.1327311
  28. J. R. Hahn, Bull. Korean Chem. Soc. 26, 1071 (2005) https://doi.org/10.5012/bkcs.2005.26.7.1071
  29. D. Vanderbilt, Phys. Rev. B 41, R7892 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  30. J. P. Perdew, Electronic Structure of Solids '91, eds. P. Ziesche, and H. Eschrig (Academie Verlag, Berlin, 1991)
  31. G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  32. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  33. K. Y. Kim, B. K. Song, S. Jeong, and H. Kang, J. Phys. Chem. B 107, 11987 (2003) https://doi.org/10.1021/jp035760l
  34. Q. Li, and K. T. Leung, Surf. Sci. 541, 113 (2003) https://doi.org/10.1016/S0039-6028(03)00890-2
  35. J. R. Hahn, H. Jeong, and S. Jeong (Unpublished)
  36. E, Fattal, M. R. Radeke, G. Reynolds, and E. A. Carter, J. Phys. Chem. B 101, 8658 (1997) https://doi.org/10.1021/jp9712967
  37. Y. Wisjaja, M. M. Mysinger, and C. B. Musgrave, J. Phys. Chem. B 104, 2527 (2000) https://doi.org/10.1021/jp9936998
  38. F. Tao, M. H. Qiao, Z. H. Wang, and G. Q. Xu, J. Phys. Chem. B 107, 6384 (2003) https://doi.org/10.1021/jp030259e
  39. S. Cao. S. K. coulter, M. D. Ellison, H. Liu, J. Liu, and R. J. Hamers, J. Phys. Chem. B 105, 3759 (2001) https://doi.org/10.1021/jp003329f
  40. T. Kugler, U. Thibatu, M. Abraham, G. Folkers, and W. Gopel, Surf. Sci. 206, 64 (1992)
  41. T. Kugler, S. Ziegler, and W. Gopel, Mater. Sci. Eng. B 37, 112 (1996) https://doi.org/10.1016/0921-5107(95)01466-7
  42. R. M. Rummel, and C. Ziegler, Surf. Sci. 418, 303 (1998) https://doi.org/10.1016/S0039-6028(98)00726-2