Separation Reaction Characteristics of Boron Ion by Ion Exchange Method

이온교환법을 이용한 해수 중 붕소이온 분리 반응 특성

  • Jung Boo-Young (School of Chemical Engineering, Chungnam National University) ;
  • Kang Suk-Hwan (School of Chemical Engineering, Chungnam National University) ;
  • Lee Jae-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Hwang Taek-Sung (School of Chemical Engineering, Chungnam National University)
  • 정부영 (충남대학교 화학공학과) ;
  • 강석환 (충남대학교 화학공학과) ;
  • 이재천 (한국지질자원연구원 자원활용소재연구부) ;
  • 황택성 (충남대학교 화학공학과)
  • Published : 2006.01.01

Abstract

In this study, it was investigated on the boron separation ken synthetically prepared seawater. ion exchange resin used in the experiments was Amberlite IRA 743, containing glucamine functional group. The experiments were carried out as a function of the conditions of the pH, boron initial concentration and temperature of seawater in a batch reactor. As a result, optimum conditions for boron adsorption were at pH 8.5 and 313 K, respectively. The adsorption rate was increased very fast with increasing the temperature, but decreased with increasing the initial concentration of boron. Also, the kinetics for boron adsorption applied the pseudo-second order model, as follows: $$\frac{X}{1-X}=780[C_0]^{-1.65}t^{1.48}\;exp\;({-\frac{17883}{RT}}\)\;;\;pH8.5$$

본 연구에서는 합성된 해수 중의 붕소 분리에 관한 연구를 수행하였다. 실험에 사용된 이온교환수지는 글루카아민(glucamine) 작용기가 함유되어 있는 Amberlite IRA 743이며, 해수의 pH, 붕소의 초기농도, 반응온도 등을 변화시켜가면서 회분식 반응기에서 수행하였다. 그 결과, Amberlite IRA 743수지의 붕소흡착에 적합한 pH는 8.5로 나타났으며, 313K에서 최고의 흡착효율을 나타냄을 알 수 있었다. 흡착속도는 온도의 증가에 따라 빠르게 나타났으며, 반면에 붕소 초기의 농도가 증가하면 감소하였다. 또한, 실험 결과들을 2차 균일반응의 모델에 적용하여 다음의 속도 식을 얻을 수 있었다. $$\frac{X}{1-X}=780[C_0]^{-1.65}t^{1.48}\;exp\;({-\frac{17883}{RT}}\)\;;\;pH8.5$$

Keywords

References

  1. G. S. Banuelos, G. Cardon, B. Mackey, L. Ben-Ascher, P. Beuselinck, S. Akohoue, and S. Zambrzuski, J. Environ. Qual., 22, 786 (1993) https://doi.org/10.2134/jeq1993.00472425002200040021x
  2. S. Sabin, Desalination, 143, 35 (2002) https://doi.org/10.1016/S0011-9164(02)00219-9
  3. S. H. Cho, K. C. Kim, and J. S. Oh, J. KSEE, 18, 333 (1996)
  4. T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer(Korea), 25, 451 (2001)
  5. B. M. Smith, P. Todd, and C. N. Bowman, Sep. Sci. Technol., 30, 3849 (1995) https://doi.org/10.1080/01496399508015147
  6. R. Boncukcuoglu, A. Erdem Yllmaz, M. Muhtar Kocakerim, and Mehmet Copur, Desalination, 160, 159 (2004) https://doi.org/10.1016/S0011-9164(04)90006-9
  7. J. W. Na and K. J. Lee, Ann. Nucl. Energy, 20, 455 (1993) https://doi.org/10.1016/0306-4549(93)90087-6
  8. J. Deson and R. Rosset, Bulletin de la Societe Chimique de France, 8, 4307 (1968)
  9. S. Rengaraj, C. K. Joo, Y. Kim, and J. Yi, J. Hazard Mater., B102, 257 (2003)
  10. Lj. V. Rajakovic and M. Dj. Rrsttc, Carbon, 34, 769 (1996) https://doi.org/10.1016/0008-6223(96)00009-7
  11. L. K. Doraiswamy and M. M. Sharma, Heterogeneous Reactions, Analysis, Examples, and Reactor Design, Vol. 2, Wiley, New York, 1984