Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites

크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용

  • Kim, Jong-Woung (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chang-Keun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • 김종웅 (중앙대학교 화학신소재공학부) ;
  • 김창근 (중앙대학교 화학신소재공학부)
  • Published : 2006.01.01

Abstract

Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.

고분자계 치아수복용 복합재료에 사용되는 다양한 크기의 나노실리카 입자를 Stober method를 이용하여 제조하고, 3-methacrylofpropyltrimethoxysilane $(\gamma-MPS)$로 제조된 입자 표면 처리 여부에 따른 유기 수지 내에서의 실리카 입자의 분산도 변화를 조사하였다 반응에 사용된 반응물인 tetraethylorthosilicate(TEOS)와 물의 양, 촉매인 암모니아의 양, 용매의 종류와 양을 조절하여 다양한 크기의 나노실리카 입자를 제조하였다. 용매로 에탄올보다 메탄올을 사용할 경우 더 작은 입자가 생성되었다. 또, 물의 함량이 증가할수록 작은 입자가 형성되는 반면, 촉매와 전구체의 경우는 함량이 증가함에 따라 형성된 입자의 크기도 증가하였다. 유기 소재들과의 혼합시 계면 특성 향상을 위해 제조된 친수성의 나노실리카를 $\gamma-MPS$와 반응시켜 소수성의 나노실리카 입자를 제조하였다 실리카 입자 크기가 작을수록 단위 질량당 존재하는 $\gamma-MPS$의 함량은 많았지만, 단위 표면적당 존재하는 $\gamma-MPS$의 양은 실리카 입자의 크기에 영향을 받지 않았다. $\gamma-MPS$로 표면 처리된 실리카 입자의 고분자계 치아수복용 레진 내에서의 분산성은 표면 처리되지 않은 실리카에 비해 크게 향상되었다.

Keywords

References

  1. M. Donald and D. W. Orson, J. Am. Dent. Assoc., 92,1189 (1976) https://doi.org/10.14219/jada.archive.1976.0177
  2. P. Leonard and M. C. Elise, J. Am. Dent Assoc., 92, 1195 (1976) https://doi.org/10.14219/jada.archive.1976.0156
  3. J. W. Osborne and S. J. Friedman, J. Prosthet. Dent., 55, 335 (1986) https://doi.org/10.1016/0022-3913(86)90115-0
  4. I. C. Schoonover and W. Sounder, J. Am. Dent Assoc., 28, 1278 (1941) https://doi.org/10.14219/jada.archive.1941.0194
  5. E. L. Pashley, R. W. Comer, E .E. Parry, and D. H. Pashley, Open Dent., 16, 82 (1991)
  6. M. Staninec and M. Holt, J. Prostbet, Dent., 59, 397(1988) https://doi.org/10.1016/0022-3913(88)90030-3
  7. Y. Kim, J. Y. Lee, C. K. Kim, and O. Y, Kim, Polymer(Korea), 28, 426 (2004)
  8. J. S. Jang and S. W. Kim, Polymer(Korea), 18, 584 (1994)
  9. R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979
  10. C. Payne, The Colloid Chemistry of Silica, H. Bergna, Editor, American Chemical Society, Washington, DC, 1994
  11. W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci., 26, 62 (1968) https://doi.org/10.1016/0021-9797(68)90272-5
  12. J. Luo, R. Seghi, and J. Lannutti, Mater. Sci. & Eng. C, 5, 15 (1997) https://doi.org/10.1016/S0928-4931(96)00155-5
  13. J. D. Miller and H. Ishida, Surf. Sci., 148, 601 (1984) https://doi.org/10.1016/0039-6028(84)90600-9
  14. L. Chu, M. W. Daniels, and L. F. Francis, Chem. Mater., 9, 2577 (1997) https://doi.org/10.1021/cm9702880
  15. M. Abbound, M. Turner, E. Duguet, and M. Fontanille, J. Mater. Chem., 7, 1527 (1997) https://doi.org/10.1039/a700573c
  16. M. W. Daniels and L. F. Francis, J. Colloid Interf. Sci., 205, 191 (1998) https://doi.org/10.1006/jcis.1998.5671
  17. M. W. Daniels, F. Sefcik, L. F. Francis, and A. V. McCormick, J. Colloid Interf. Sci., 219, 351 (1999) https://doi.org/10.1006/jcis.1999.6497
  18. H. Jo and F. D. Blum, Langmuir, 15, 2444 (1999) https://doi.org/10.1021/la980200c
  19. N. Nishiyama, R. Shick, and H. Ishida, J. Colloid Interf. Sci., 143, 146 (1991) https://doi.org/10.1016/0021-9797(91)90447-G
  20. E. Bourgeat-Lami and J. Lang, J. Colloid Interf. Sci., 197, 293 (1998) https://doi.org/10.1006/jcis.1997.5265
  21. W. Posthumus and P. C. M. M. Magusin. J. Colloid Interf. Sci., 269, 109 (2004) https://doi.org/10.1016/j.jcis.2003.07.008
  22. D. L. Green, J. S. Lin, M. Z.-C. Hu, Dale W. Schaefer, and M. T. Harris, J. Colloid Interf. Sci., 266, 346 (2003) https://doi.org/10.1016/S0021-9797(03)00610-6
  23. G. E. Berendsen and L. De Gala, J. Liq. Chromatogr., 1, 561 (1978) https://doi.org/10.1080/01483917808060019
  24. A. P. Philipse and A. Vrij, J. Colloid Interf. Sci., 128, 121 (1989) https://doi.org/10.1016/0021-9797(89)90391-3