Therapeutic radionuclides

치료용 방사성동위원소

  • Choi, Sun-Ju (Radioisotope Research & Development Lab, HANARO Application Research, Korea Atomic Energy Research Institute(KAERI)) ;
  • Hong, Young-Don (Radioisotope Research & Development Lab, HANARO Application Research, Korea Atomic Energy Research Institute(KAERI)) ;
  • Lee, So-Young (Radioisotope Research & Development Lab, HANARO Application Research, Korea Atomic Energy Research Institute(KAERI))
  • 최선주 (한국원자력연구소, 하나로이용연구단, 동위원소연구개발LAB) ;
  • 홍영돈 (한국원자력연구소, 하나로이용연구단, 동위원소연구개발LAB) ;
  • 이소영 (한국원자력연구소, 하나로이용연구단, 동위원소연구개발LAB)
  • Published : 2006.04.29

Abstract

Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

Keywords

References

  1. Pillai MRA, Chakraborty S, Das T, Venkatesh M, Ramamoorthy N. Production logistics of $^{177}Lu$ for radionuclide therapy. Appl Radiat and Isoto 2003;59:109-18 https://doi.org/10.1016/S0969-8043(03)00158-1
  2. Volkert WA, Goeckeler WF, Ehrhardt, GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med 1991;32:174-85
  3. Wessels BW, Rogus RD. Radionuclide selection and model absorbed dose calculations for radiolabelled tumor associated antibodies. Med Phys 1984;11:638-45 https://doi.org/10.1118/1.595559
  4. Fritzberg AR, Gustavson LM, Hylarides MD, Reno JM. Chemical and Stuctural Approaches to Rational Drug Design. Boca Raton 1995;125
  5. Volkert WA, Hoffman TJ. Therapeutic radiophamaceuticals. Chem Rev 1999;99:2269-92 https://doi.org/10.1021/cr9804386
  6. Qaim SM. Therapeutic radionuclides and nuclear data. Radiochim Acta 2001;89:297-302 https://doi.org/10.1524/ract.2001.89.4-5.297
  7. Srivastava SC, Dadachova E. Recent advances in radionuclide therapy. Semin Nucl Med 2001;31:330-41 https://doi.org/10.1053/snuc.2001.27043
  8. Ehrhardt GJ, Ketring AR, Ayers LM. Reactor produced radionuclides at the University of Missouri research reactor. Appl Radiat Isot 1998;49:295-7 https://doi.org/10.1016/S0969-8043(97)00038-9
  9. Mausner LF, Kolsky KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 1998;49:285-94 https://doi.org/10.1016/S0969-8043(97)00040-7
  10. Mausner LF, Srivastava SC. Selection of radionuclides for radioimmunotherapy. Med Phys 1993;20:503-9 https://doi.org/10.1118/1.597045
  11. Kamioski H, Mirzadeh S, Lambrecht RM, Knapp Jr. R, Dadachova K. $^{188}$Re generator for biomedical applications. Radiochim Acta 1994;65:39-46
  12. Grazman B, Troutner DE. $^{105}$Rh as a potential radiotherapeutic agent. Appl Radiat Isot 1988;39:257-60 https://doi.org/10.1016/0883-2889(88)90181-5
  13. Unni PR, Pillai MRA. Preparation and radiochemical separation of Rh-105 for radiopharmaceutical applications. Radiochim Acta 2002;90:363-9 https://doi.org/10.1524/ract.2002.90.6.363
  14. Venkatesh M, Pandey U, Dhami PS, Kannan R, Achuthan PV, Chitnis RR, et al. Complexation studies with 90Y from a novel 90Sr-90Y generator. Radiochim Acta 2001;89:413-7 https://doi.org/10.1524/ract.2001.89.6.413
  15. Rogers BE, Anderson CJ, Connett JM. Comparison of bifunctional chelates for radiolabeling monoclonal antibodies withcopper radioisotopes: biodistribution and metabolism. Bioconj Chem 1996;7:511-22 https://doi.org/10.1021/bc9600372
  16. O'Brien Jr. HA. The preparation of $^{67}$Cu from $^{67}$Zn in a nuclear reactor. Int J Appl Radiat Isot 1969;20:121-4 https://doi.org/10.1016/0020-708X(69)90149-5
  17. O'Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with betaemitting radionuclides. J Nucl Med. 1995;36:1902-9
  18. O'Donoghue JA. Dosimetric aspects of radioimmunotherapy. Tumor Targeting 1998;3:105-11
  19. Carlsson J, Aronsson EF, Gietala SO, Stigbrand T, Tennvall J.Tumour therapy with radionuclides: assessment of progress and problems. Radiotherapy and oncol. 2003;66:107-17 https://doi.org/10.1016/S0167-8140(02)00374-2
  20. Essand M, Gronvik C, Hartman T, Carlsson J. Radioimmunotherapy of prostatic adenocarcinomas: effects of $^{131}$I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer 1995;63:387-94 https://doi.org/10.1002/ijc.2910630315
  21. Zweit J. Radionuclides and carrier molecules for therapy. Phys Med Biol 1996;41:1905-14 https://doi.org/10.1088/0031-9155/41/10/004
  22. Bernhardt P, Forssell-Aronsson E, Jacobsson L, Skarnemark G.Low-energy electron emitters for targeted radiotherapy of small tumours. Acta Oncol 2001;40:602-8 https://doi.org/10.1080/028418601750444141
  23. Larsen RH, Murud KM, Akabani G, Hoff P, Bruland OS, Zalutsky MR. $^{211}$At- and $^{131}$I-labeled bisphosphonates with high in vivo stability and bone accumulation. J Nucl Med 1999;40:1197-203
  24. McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK, Wu K, Pellegrini V, Curcio MJ, Miederer M, Bander NH, Scheinberg DA. Tumor therapy with targeted atomic nanogenerators. Science 2001;294:1537-41 https://doi.org/10.1126/science.1064126
  25. Palm S, Back T, Claesson I, Delle U, Hultborn R, Jacobsson L, Kopf I, Lindegren S. Effects of the alpha-particle emitter At-211 and low-dose-rate gamma-radiation on the human cell line Colo-205 as studied with a growth assay. Anticancer Res 1998;18:1671-6
  26. Yao Z, Garmestani K, Wong KJ, Park LS, Dadachova E, Yordanov A, Waldmann TA, Eckelman WC, Paik CH, Carrasquillo JA. Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. J Nucl Med 2001;42:1538-44
  27. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des 2000;6:1433-55 https://doi.org/10.2174/1381612003399275
  28. Hofer KG. Biophysical aspects of Auger processes. Acta Oncol 2000;39:651-8 https://doi.org/10.1080/028418600750063686
  29. O'Donoghue JA, Wheldon TE. Targeted radiotherapy using Auger electron emitters. Phys Med Biol 1996;41:1973-92 https://doi.org/10.1088/0031-9155/41/10/009
  30. Jean-Francois Chatal, Cornelis A Hoefnagel. Radionuclide therapy. Lancet 1999;354:931-5 https://doi.org/10.1016/S0140-6736(99)06002-X
  31. Teunissen JJM, Kwekkeboom DJ, Jong M, Esser JP, Valkema R, Krenning EP. Peptide receptor radionuclide therapy. Best Practice & Research Clinical Gastroenterology 2005;19:595-616 https://doi.org/10.1016/j.bpg.2005.04.001
  32. Pietzsch HJ, Gupta A, Reisgys M, Drews A, Seifert S, Syhre R, et al. Chemical and Biological Characterization of Technetium (I) and Rhenium(I) Tricarbonyl Complexes with Dithioether Ligands Serving as Linkers for Coupling the $Tc(CO)_{3}$ and $Re(CO)_{3}$ Moieties to Biologically Active Molecules. Bioconjugate Chem. 2000;11:414-24 https://doi.org/10.1021/bc990162o