Hemodynamic Outcome of Successful Bypass Surgery in Patients with Atherosclerotic Cerebrovascular Disease: A study with Acetazolamide and $^{99m}Tc-ECD$ SPECT

죽상경화성 뇌혈관질환 환자에서 성공적인 EC/IC 우회술 후 혈류역학적 변화: 기저/아세타졸아미드 SPECT를 이용한 연구

  • Eo, Jae-Seon (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Oh, Chang-Wan (Department of Neurosurgery, Seoul National University College of Medicine) ;
  • Kim, Yu-Kyeong (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Park, Eun-Kyung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Won-Woo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 어재선 (서울대학교 의과대학 의학과 핵의학교실) ;
  • 오창완 (서울대학교 의과대학 의학과 신경외과학교실) ;
  • 김유경 (서울대학교 의과대학 의학과 핵의학교실) ;
  • 박은경 (서울대학교 의과대학 의학과 핵의학교실) ;
  • 이원우 (서울대학교 의과대학 의학과 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 의학과 핵의학교실)
  • Published : 2006.12.31

Abstract

Purpose: The aim of the study was to evaluate the hemodynamic changes after successful bypass surgery in patients with atherosclerotic stenosis in ICA using $^{99m}Tc-ECD$ SPECT. Materials and Methods: Fourteen patients (M:F=8:6, mean age; $60{\pm}9$ years) who underwent STA-MCA anastomosis for unilateral atherosclerotic cerebrovascular disease were enrolled. $^{99m}Tc-ECD$ basal/acetazolamide perfusion SPECT studies were performed before, 10 days and 6 months after bypass surgery. Perfusion reserve was defined as the % changes after acetazolamide over rest image. Regional cerebral blood flow and perfusion reserve were compared preoperative, early-postoperative and late-postoperative scans. Results: The mean resting perfusion and decrease in perfusion reserve in affected ICA territory on preoperative scan was $52.4{\pm}3.5\;and\;-7.9{\pm}4.7%$, respectively. The resting perfusion was significantly improved after surgery on early-postoperative scan (mean $53.7{\pm}2.7$) and late-postoperative scan (mean $53.3{\pm}2.5$) compared with preoperative images (p<0.05, respectively). Resting perfusion did not showed further improvement on late-postoperative scan compared with early-postoperative scan. The perfusion reserve was $-3.7{\pm}2.6%$ on early-postoperative scan, and $-1.6{\pm}2.3%$ on late-postoperative scan, which was significantly improved after surgery. Additionally, further improvement of perfusion reserved as observed on late-postoperative scan (p<0.05). While, in the unaffected ICA territory, no significant changes in the resting perfusion and perfusion reserve was observed. Conclusion: The improvement of resting perfusion and perfusion reserve in early-postoperative scan reflects the immediate restoration of the cerebral blood flow by bypass surgery. In contrasts, further improvement of perfusion reserve showing on late-postoperative scan may indicate a good collateral development after surgery, which may indicate good surgical outcome after surgery.

목적: 폐색성 뇌혈관질환에서 EC/IC 뇌혈관 우회술은 해당 뇌조직의 혈류 증가를 기대하게 된다. 본 연구에서는 $^{99m}Tc-ECD$ 뇌혈류 스펙트를 이용하여 폐색성뇌질환 환자에서 성공적인 우회로 시술 후 단기, 장기간의 혈류역학적 변화 경과를 알아보고자 하였다. 대상 및 방법: 뇌경색 또는 뇌허혈 증상을 가진 죽상경화성 뇌폐색성 혈관질환으로 성공적 STA-MCA 문합술을 시행한 14명의 환자(남:여=8:6, 평균연령: $60{\pm}9$세)를 대상으로 하였다. 술전과 술후 10일, 6개월에 시행한 $^{99m}Tc-ECD$ 기저/아세타졸아미드 부하 뇌 혈류 SPECT에서 기저 뇌혈류 및 뇌혈류예비능의 변화를 관찰하였다. 결과: 우회술 전 원인 내경동맥 측의 비경색뇌부위의 기저 혈류 및 뇌혈류예비능은$52.4{\pm}3.5$$-7.9{\pm}4.7%$이었다. 수술 후 초기 및 후기의 내경동맥 공급 뇌부위의 혈류는 각각 $53.7{\pm}2.7,\;53.3{\pm}2.5$로 술전과 비교하였을 때 유의한 증가를 보였다 (p<0.05). 술후 10일과 6개월 사이의 기저뇌혈류에는 유의한 차이가 없었다. 한편, 뇌혈류예비능은 술전과 비교하여 초기 및 후기에 유의한 호전(초기, $-3.7{\pm}2.6%$, 후기: $-1.6{\pm}2.3%$)을 보였으며, 수술 후기에서 수술 초기와 비교하여서도 유의미한 추가의 뇌혈류예 비능 증가가 관찰되었다 (p<0.05). 반면, 수술을 시행하지 않은 쪽의 내경동맥 공급 뇌부위에서는 수술 후 추적검사에서 기저혈류 및 뇌혈류예비능에 유의한 변화를 보이지 않았다. 결론: 성공적 뇌혈관 우회술 후의 초기 뇌혈류 SPECT에서의 단기적 혈류변화는 뇌혈류의 재개통에 의한 즉각적인 변화를 반영하고, 반면에 수술 후기 SPECT에 관찰되는 장기적인 혈류변화는 우회술 후에 신생혈관에 의한 측부순환에 기인하는 것으로 생각되며, 이러한 변화가 EC/IC 우회술 후 뇌졸중의 발병빈도의 감소와 상관되리라 여겨진다.

Keywords

References

  1. Mitsias PW, Welch KMA. Medical therapy for TIA's and ischemic stroke. In: Ernst CB, Stanley JC, editors. Current Therapy in Vascular Surgery. 3rd ed. St. Louis: Mosby Yearb ; 1995. p. 24-28
  2. The EC/IC Bypass Study group. The International Cooperative Study of Extracranial/Intracranial Arterial Anastomosis (EC/IC Bypass Study): methodology and entry characteristics. Stroke 1985; 16:397-406 https://doi.org/10.1161/01.STR.16.3.397
  3. Thijs VN, Albers GW. Symptomatic intracranial atherosclerosis: outcome of patients who fail antithrombotic therapy. Neurology 2000;55:490-7 https://doi.org/10.1212/WNL.55.4.490
  4. Mazighi M, Tanasescu R, Ducrocq X, Vicaut E, Bracard S, Houdart E, et al. Prospective study of symptomatic atherothrombotic intracranial stenoses: the GESICA study. Neurology 2006;66:1187- 91 https://doi.org/10.1212/01.wnl.0000208404.94585.b2
  5. Yasargil MG, Yonekawa Y. Results of microsurgical extraintracranial arterial bypass in the treatment of cerebral ischemia. Neurosurgery 1977;1:22-4 https://doi.org/10.1227/00006123-197707000-00005
  6. Gibbs JM, Wise RJ, Thomas DJ, Mansfield AO, Russell RW. Cerebral haemodynamic changes after extracranial-intracranial bypass surgery. J Neurol Neurosurg Psychiatry 1987;50:140-50 https://doi.org/10.1136/jnnp.50.2.140
  7. Caramia F, Santoro A, Pantano P, Passacantilli E, Guidetti G, Pierallini A, et al. Cerebral hemodynamics on MR perfusion images before and after bypass surgery in patients with giant intracranial aneurysms. AJNR Am J Neuroradiol 2001;22:1704-10
  8. Schmiedek P, Piepgras A, Leinsinger G, Kirsch CM, Einhupl K. Improvement of cerebrovascular reserve capacity by EC-IC arterial bypass surgery in patients with ICAocclusion and hemodynamic cerebral ischemia. J Neurosurg 1994;81:236-44 https://doi.org/10.3171/jns.1994.81.2.0236
  9. Mendelowitsch A, Taussky P, Rem JA, Gratzl O. Clinical outcome of standard extracranial-intracranial bypass surgery in patients with symptomatic atherosclerotic occlusion of the internal carotid artery. Acta Neurochir (Wien) 2004;146:95-101 https://doi.org/10.1007/s00701-003-0154-7
  10. Batjer HH, Devous MD, Sr., Purdy PD, Mickey B, Bonte FJ, Samson D. Improvement in regional cerebral blood flow and cerebral vasoreactivity after extracranial-intracranial arterial bypass. Neurosurgery 1988;22:913-9 https://doi.org/10.1227/00006123-198805000-00022
  11. Anderson DE, McLane MP, Reichman OH, Origitano TC. Improved cerebral blood flow and CO2 reactivity after microvascular anastomosis in patients at high risk for recurrent stroke. Neurosurgery 1992;31:26-33; discussion 33-4
  12. Iwama T, Hashimoto N, Hayashida K. Cerebral hemodynamic parameters for patients with neurological improvements after extracranial-intracranial arterial bypass surgery: evaluation using positron emission tomography. Neurosurgery 2001;48:504-10; discussion 510-2 https://doi.org/10.1097/00006123-200103000-00008
  13. Neff KW, Horn P, Dinter D, Vajkoczy P, Schmiedek P, Duber C. Extracranial-intracranial arterial bypass surgery improves total brain blood supply in selected symptomatic patients with unilateral internal carotid artery occlusion and insufficient collateralization. Neuroradiology 2004;46:730-7 https://doi.org/10.1007/s00234-004-1252-9
  14. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005;36:e83-99 https://doi.org/10.1161/01.STR.0000177884.72657.8b
  15. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol 2003;24:419-2
  16. Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM. Noninvasive assessment of $CO_2$-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988;19:963-9 https://doi.org/10.1161/01.STR.19.8.963
  17. Sullivan HG, Kingsbury TBt, Morgan ME, Jeffcoat RD, Allison JD, Goode JJ et al. The rCBF response to Diamox in normal subjects and cerebrovascular disease patients. J Neurosurg 1987;67:525-3 https://doi.org/10.3171/jns.1987.67.4.0525
  18. Vorstrup S, Brun B, Lassen NA. Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 1986;17:1291-8 https://doi.org/10.1161/01.STR.17.6.1291
  19. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984;1:310-4
  20. Spetzler R, Chater N. Microvascular bypass surgery. Part 2: physiological studies. J Neurosurg 1976;45:508-13 https://doi.org/10.3171/jns.1976.45.5.0508
  21. Lee JS, Lee DS, Kim YK, Kim J, Lee HY, Lee SK, Chung JK, Lee MC. Probabilistic map of blood flow distribution in the brain from the internal carotid artery. Neuroimage 2004;23:1422-3 https://doi.org/10.1016/j.neuroimage.2004.07.057
  22. The EC/IC Bypass Study Group. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 1985;313:1191-200 https://doi.org/10.1056/NEJM198511073131904
  23. Powers WJ, Grubb RL, Jr., Raichle ME. Clinical results of extracranial-intracranial bypass surgery in patients with hemodynamic cerebrovascular disease. J Neurosurg 1989;70:61-7 https://doi.org/10.3171/jns.1989.70.1.0061
  24. Yasui N, Suzuki A, Sayama I, Kawamura S, Shishido F, Uemura K. Comparison of the clinical results of STA-MCA anastomosis and the medical treatment in the cerebral low perfusion patients with viable brain tissue. Neurol Res 1991;13:84-8 https://doi.org/10.1080/01616412.1991.11739971
  25. McCormick PW, Tomecek FJ, McKinney J, Ausman JI. Disabling cerebral transient ischemic attacks. J Neurosurg 1991;75:891-901 https://doi.org/10.3171/jns.1991.75.6.0891
  26. Anderson DE, McLane MP, Reichman OH, Origitano TC. Improved cerebral blood flow and CO2 reactivity after microvascular anastomosis in patients at high risk for recurrent stroke. Neurosurgery 1992;31:26-33 https://doi.org/10.1227/00006123-199207000-00005
  27. Powers WJ, Press GA, Grubb RL, Jr., Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 1987;106:27-34 https://doi.org/10.7326/0003-4819-106-1-27
  28. Iwama T, Hashimoto N, Takagi Y, Tsukahara T, Hayashida K. Predictability of extracranial/intracranial bypass function: a retrospective study of patients with occlusive cerebrovascular disease. Neurosurgery 1997;40:53-9 https://doi.org/10.1097/00006123-199701000-00011
  29. Schwamm LH, Koroshetz WJ, Sorensen AG, Wang B, Copen WA, Budzik R et al. Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke 1998;29:2268-76 https://doi.org/10.1161/01.STR.29.11.2268
  30. Lansberg MG, Thijs VN, O'Brien MW, Ali JO, de Crespigny AJ, Tong DC et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. Am J Neuroradiol 2001;22:637-4
  31. Watanabe H, Murata Y, Ohashi I, Oda K, Matsushima E, Okubo Y et al. Long-term change in size of cerebral infarction: predictive value of brain perfusion SPECT using statistical parametric mapping. Cerebrovasc Dis 2004;18:22-9 https://doi.org/10.1159/000078604
  32. Pantano P, Baron JC, Samson Y, Bousser MG, Derouesne C, Comar D. Crossed cerebellar diaschisis. Further studies. Brain 1986;109:677-94 https://doi.org/10.1093/brain/109.4.677
  33. Infeld B, Davis SM, Lichtenstein M, Mitchell PJ, Hopper JL. Crossed cerebellar diaschisis and brain recovery after stroke. Stroke 1995;26:90-5 https://doi.org/10.1161/01.STR.26.1.90
  34. Miura H, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Hatazawa J. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging 1994;4:91-6 https://doi.org/10.1111/jon19944291