Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa (Department of Applied Chemistry, Sejong University) ;
  • Won Jongok (Department of Applied Chemistry, Sejong University) ;
  • Oh In Hwan (Korea Institute of Science and Technology) ;
  • Ha Heung Yong (Korea Institute of Science and Technology) ;
  • Cho Eun Ae (Korea Institute of Science and Technology) ;
  • Kang Yong Soo (Department of Chemical Engineering, Hanyang University)
  • Published : 2006.02.01

Abstract

The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Keywords

References

  1. J. Larminie and A Dick, Fuel Cell Systems Explained, B. Lane, Ed., J. Wiley & Sons Ltd, Chichester, West Sussex, PO19 1UD, England, 2000
  2. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
  3. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  4. H. J. Kim, M. H. Litt, S. Y. Nam, and E. M. Shin, Macromol. Res., 11, 458 (2003) https://doi.org/10.1007/BF03218976
  5. S. A. Lee, K. W. Park, B. K. Kwon, and Y. E. Sung, J. Ind. Eng. Chem., 9, 63 (2003) https://doi.org/10.1021/ie50085a024
  6. M. S. Wilson, J. A. Valerio, and S. Gottesfeld, Electrochimica Acta, 40, 355 (1995) https://doi.org/10.1016/0013-4686(94)00272-3
  7. C. S. Kim, Y. G. Chun, D. H. Peck, and D. R. Shin, Int. J. Hydrogen Energy, 23, 1045 (1998) https://doi.org/10.1016/S0360-3199(98)00021-4
  8. M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem., 22, 1 (1992) https://doi.org/10.1007/BF01093004
  9. M. Uchida, Y, Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142, 463 (1995) https://doi.org/10.1149/1.2044068
  10. A. J. Appleby, J. Power Sources, 49, 15 (1994) https://doi.org/10.1016/0378-7753(93)01790-O
  11. E. Antolini, J. Appl. Electrochem., 34, 563 (2004) https://doi.org/10.1023/B:JACH.0000021923.67264.bb
  12. S. Litster and G. McLean, J. Power Sources, 130, 61 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.055
  13. W. Huang, X. Han, and E. Wang, J. Electrochem. Soc., 150, E218 (2003) https://doi.org/10.1149/1.1554920
  14. B. J. Cha, Y. S. Kang, and J. Won, Macromolecules, 34, 6631 (2001) https://doi.org/10.1021/ma0104276
  15. J. Won, K. J. Ihn, and Y. S. Kang, Langmuir, 18, 8246 (2002) https://doi.org/10.1021/la020344y
  16. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  17. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc.,60, 314 (1938)
  18. S. Brunauer, L. S. Deming, W. K. Deming, and E. Teller, J. Am. Chem. Soc., 63, 1724 (1940) https://doi.org/10.1021/ja01851a065
  19. S. Brunauer, The Adsorption of Gases and Vapours, Clarendon Press, Oxford, 1945
  20. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373, (1951) https://doi.org/10.1021/ja01145a126
  21. U. S. Jeon, E. A. Cho, H.-Y. Ha, S.-A. Hong, and I.-H. Oh, Trans. of the Korea Hydrogen and New Energy Society, 13, 322 (2002)
  22. The value of pKa of SO_3H and COOH were assumed as a sulfuric acid and an acetic acid, respectively
  23. E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochem. Soc., 135, 2209 (1988) https://doi.org/10.1149/1.2096240
  24. The charge of the hydrogen desorption peak was 70.3 mC/ cm^2. The average diameter of the Pt particles in 20% E-TEK catalyst is about 2 nm, and the density of platinum is 21.4 g cm^-2. Assuming a charge of 0.21 mC cm^-2 for the surface of Pt, from the charge of the hydrogen desorption peak (70.3 mC/cm^2), the electrochemical surface area is calculated to be 47.8 m^2 g^-1. By comparison with the surface area obtained from the platinum particle size, the utilization of Pt particles can be calculated as: (47.8/140)$x$100% = 34.1% in case of reference
  25. S. Srinivasan, E. A. Ticianelli, C. R. Derouin, and A. Redondo, J. Power Sources, 22, 359 (1988) https://doi.org/10.1016/0378-7753(88)80030-2
  26. M. Watanabe, M. Tomikawa, and S. Motoo, J. Electroanal. Chem., 195, 81 (1985) https://doi.org/10.1016/0022-0728(85)80007-3
  27. E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, J. Electroanal. Chem., 251, 275 (1988) https://doi.org/10.1016/0022-0728(88)85190-8