DOI QR코드

DOI QR Code

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section

하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가

  • 정우균 (서울대학교 기계항공공학부 대학원) ;
  • 안성훈 (서울대학교 기계항공공학부) ;
  • 안병철 (충북대학교 전기컴퓨터공학부) ;
  • 박성배 (충북대학교 전기컴퓨터공학부) ;
  • 원명식 (국방과학연구소)
  • Published : 2006.02.01

Abstract

The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.

첨단 전자무기체계의 지속적인 발전으로 인하여 현대전의 승패는 적 레이더 탐지의 회피에 크게 좌우된다고 할 수 있다. 반사되는 레이더의 탐지신호를 최소화시키기 위한 다양한 연구가 수행되어 왔는데, 본 연구에서는 뛰어난 기계적, 전자기적 물성으로 응용분야가 지속적으로 확대되고 있는 섬유강화 복합재료를 이용하여 레이더 전자파 흡수체(Radar absorbing structure, RAS)를 제작하고 레이더 단면적(Radar cross section, RCS)을 평가하였다 유리섬유 복합재에 뛰어난 유전적 특성을 지닌 나노 크기의 카본블랙(Carbon-black)을 첨가하여 흡수층을 구성하고, 반사특성이 탁월한 탄소섬유 복합재를 후면의 반사층으로 배치하여 "C" 및 "U" 형상의 하이브리드 복합재 RAS 겔을 제작하였다. RAS 쉘의 제작간 서로 다른 두 재료의 열적물성치 차이로 스프링 백이라 불리는 변형이 발생하였는데, 금형의 굽힘각도 제어를 통하여 효과적으로 보정할 수 있었다. 또한 상용 유한요소해석 프로그램인 ANSYS를 이용하여 스프링 백 보정 결과를 예측하고 실험결과와 비교하였다. 제작된 RAS쉘의 RCS는 근사적 계산기법인 물리광학법을 이용하여 예측하고 컴팩트 레인지(Compact range)를 이용하여 측정한 실힘결과와 비교하였다 두가지 형상의 RCS 모두 측정결과와 예측된 RCS 값이 일치하며 우수한 레이더 전자파 흡수 특성을 지닌 것을 확인하였다.

Keywords

References

  1. Oh, J. H., Oh, K. S., Kim, C. G. and Hong, C. S., 'Design of radar absorbing structures using Glass/epoxy composite containing carbon black in X-band ranges,' Composites Part B, Vol. 35, 2004, pp. 49-56 https://doi.org/10.1016/j.compositesb.2003.08.011
  2. Pinho, M. S., Gregori, M. L., Nunes, R. C. R. and Soares, B. G., 'Performance of radar absorbing materials by waveguide measurements for X and Ku-band frequencies,' European Polymer Journal, Vol. 38, 2002, pp. 2321-2327 https://doi.org/10.1016/S0014-3057(02)00118-0
  3. Chung, D. D. L., 'Electromagnetic interference shielding effectiveness of materials,' Carbon, Vol. 39, 2001, pp. 279-285 https://doi.org/10.1016/S0008-6223(00)00184-6
  4. Li, G., Hu, G. G., Zhou, H. D., Fan, X. J. and Li, X. G., 'Absorption of microwaves $La_1$-$_{X}Sr_{X}mnO_{3}$ manganese powders over a wide bandwidth,' Journal of Physics, Vol. 90, 2001, pp. 5512-5514
  5. Cheng, K. B., Ramakrishna, S. and Lee, K. C., 'Electro magnetic shielding of copper/glass fiber knitted fabric reinforced poly-propylene composites,' Composites Part A, Vol. 31, 2000, pp. 1039-1045 https://doi.org/10.1016/S1359-835X(00)00071-3
  6. Tretyakov, S. A. and Maslovski, S. I., 'Thin Absorbing Structure for all incidence angles based on the use of a high-impedance surface,' Microwave and Optical Technology Letters, Vol. 38, 2003, pp. 175-178 https://doi.org/10.1002/mop.11006
  7. Matous, K. and Dvorak, G. J., 'Optimization of Electromagnetic Absorption in Laminated Composite Plate,' Transactions on Magnetics, Vol. 39, 2003, pp. 1827-1835 https://doi.org/10.1109/TMAG.2003.809861
  8. Kajima, A., Nakayama, R., Fujii, T. and Inoue, M., 'Variation of dielectric permeability by applying magnetic field in $Bi_{2}O_{3}$- $Fe_{2}O_{3}$ - $PbTiO_{3}$ sputtered films,' Journal of magnetism and magnetic materials, Vol. 258, 2003, pp. 597-599 https://doi.org/10.1016/S0304-8853(02)01164-2
  9. Trakhtenberg, L. I., Axelrod, E., Gerasimov, G. N., Nikolaeva, E. V. and Smirnova, E. I. 'New nano-composite metal-polymer materials : dielectric behavior,' Non-Crystalline Solids, Vol. 305, 2002, pp. 190-196 https://doi.org/10.1016/S0022-3093(02)01106-7
  10. Talbot, P., Konn, A. M. and Brosseau, C., 'Electromagnetic characterization of fine scale particulate composite materials,' Journal of magnetism and magnetic materials, Vol. 249, 2002, pp. 481-485 https://doi.org/10.1016/S0304-8853(02)00458-4
  11. Sarrazin, H., Kim, B. K., Ahn, S. H. and Springer, G. S., 'Effect of Processing Temperature and Layup on Springback,' Journal of Composite Materials, Vol. 29, No. 10, 1995, pp. 1278-1293 https://doi.org/10.1177/002199839502901001
  12. Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A.,Willden, K. and Melson, K., 'Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts,' Composites: Part A, Vol. 33, No.2, 2002, pp. 341-351 https://doi.org/10.1016/S1359-835X(01)00123-3
  13. Giliotti, M., Wisnom, M. R. and Potter, K. D., 'Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates,' Composites Science and Technology, Vol. 63, No.2, 2003, pp. 187-197 https://doi.org/10.1016/S0266-3538(02)00195-1
  14. Giliotti, M., Jacquemin, F. and Vautrin, A., 'On the maximum curvatures of 0/90 plates under thermal stress,' Composite Structures, 2004, Article in press
  15. Barucci, M., Bianchini, G., Rosso, T. D., Gottardi, E., Peroni, I. and Ventura, G., 'Thermal expansion and thermal conductivity of glass fibre reinforced nylon at low temperature,' Cryogenics, Vol. 40, 2000, pp. 465-467 https://doi.org/10.1016/S0011-2275(00)00067-9
  16. Korab, J., Stefanik, P., Kavecky, S., Sebo, P. and Korb, G., 'Thermal expansion of cross-ply and woven carbon fibre copper matrix composites,' Composites : Part A, Vol. 33, No. I, 2002, pp. 133-136 https://doi.org/10.1016/S1359-835X(01)00068-9
  17. Kanagaraj, S. and Pattanayak, S., 'Simultaneous measurements of thermal expansion and thermal conductivity of FRPs by employing a hybrid measuring head on a GM refrigerator,' Cryogenics, Vol. 43, No.8 2003, pp. 451-458 https://doi.org/10.1016/S0011-2275(03)00101-2
  18. Knott, E. F., Shaeffer, J. F. and Tuley, M. T., 'Radar Cross Section,' 2nd Edition., Artech House, 1993
  19. Jung, W. K., Kim, B., Won, M. S. and Ahn, S. H., 'Fabrication of Radar Absorbing Structure (RAS) Using GFR-nano Composite and Spring-back Compensation of Hybrid-Composite RAS Shells,' Proceeding of 13th International Conference on Composite Structures, Monash Univ .. Melbourne. Australia. November 14-16. 2005
  20. Bowman, J. C., 'Methods for rapid computation of RCS in aircraft design,' Dig. IEEE National Aerospace and Electronics Conf, 10-12 Oct. 2000, pp. 118-125
  21. Rius, J. M., Ferrando, M. and Jofre, L., 'High-frequency RCS of complex radar targets in real-time,' IEEE Trans. Antennas Propagat., Vol. 41, No.9, 1993, pp. 1308-1319 https://doi.org/10.1109/8.247759
  22. Knott, E. F., 'The relationship between Mitzner's ILDC and Michaeli's equivalent currents,' IEEE Trans. Antennas Propagat., Vol. 33, No.1, 1985, pp. 112-114 https://doi.org/10.1109/TAP.1985.1143482
  23. Knott, E. F., 'A progression of high-frequency RCS prediction techniques,' Proc. IEEE, Vol. 73, No.2, 1985, pp. 252-264