Determination of the Lidar Ratio Using the GIST / ADEMRC Multi-wavelength Raman Lidar System at Anmyeon Island

GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구

  • Noh Young Min (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Kwangju Institute of Science & Technology) ;
  • Kim Young Min (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Kwangju Institute of Science & Technology) ;
  • Kim Young Joon (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Kwangju Institute of Science & Technology) ;
  • Choi Byoung Chul (Korea Global Atmospheric Watch Observatory (KGAWO) Meteorological Research Institute (METRI))
  • 노영민 (광주과학가술원 환경공학과, 환경 모니터링 신기술 연구센터) ;
  • 김영민 (광주과학가술원 환경공학과, 환경 모니터링 신기술 연구센터) ;
  • 김영준 (광주과학가술원 환경공학과, 환경 모니터링 신기술 연구센터) ;
  • 최병철 (기상연구소 지구대기감시관측소)
  • Published : 2006.02.01

Abstract

Tropospheric aerosols are highly variant in time and space due to non-uniform source distribution and strong influence of meteorological conditions. Backscatter lidar measurement is useful to understand vertical distribution of aerosol. However, the backscatter lidar equation is undetermined due to its dependence on the two unknowns, extinction and backscattering coefficient. This dependence necessitates the exact value of the ratio between two parameters, that is, the lidar ratio. Also, Iidar ratio itself is useful optical parameter to understand properties of aerosols. Tropospheric aerosols were observed to understand variance of lidar ratio at Anmyeon island ($36.32^{/circ}N$, $126.19^{/circ}E$), Korea using a multi-wavelength raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea during measurement periods; March 15$\sim$April $16^{th}$, 2004 and May 24$\sim$ $8^{th}$ 2005. Extinction coefficient, backscattering coefficient, and lidar ratio were measured at 355 and 532 nm by the Raman method. Different types of aerosol layers were distinguished by the differences in the optical properties such as Angstrom exponent, and lidar ratio. The average value of lidar ratio during two observation periods was found to be $50.85\pm4.88$ sr at 355 nm and $52.43\pm15.15$ sr at 532 nm at 2004 and $57.94\pm10.29$ sr at 355 nm and $82.24\pm15.90$ sr at 532 nm at 2005. We conduct hysplit back-trajectory to know the pathway of airmass during the observation periods. We also calculate lidar ratio of different type of aerosol, urban, maritime, dust, continental aerosols using OPAC (Optical Properties of Aerosols and Clouds), Remote sensing of atmospheric aerosol using a multi-wavelengh lidar system with Raman channels is quite and powerful tool to characterize the optical propertises of troposheric aerosols.

Keywords

References

  1. 윤순창, 원재광(1998) 서울에서의 에어로졸 라이다 측정 결과, 1998년도 한국대기보전학회 춘계학술대회 요지집, 272-273
  2. Ackermann, J. (1998) The extinction-to-backscattering ratio of tropospheric aerosol: A numerical study, J. Atmos. Oceanic Technol., 15, 1043-1050 https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2
  3. Ansmann, A., R. Engelmann, D. Althausen, and U. Wandinger (2005) High aerosol load over Pearl River Delta, China, observed with Raman lidar and Sun photometer, Geophys. Res. Lett., 32, L13815 https://doi.org/10.1029/2005GL023094
  4. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1990) Measurement of atmospheric aerosol extinction profiles with a raman lidar, Optics letters. Vol. 15
  5. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113-7131 https://doi.org/10.1364/AO.31.007113
  6. Bissonnette, L.R. (1986) Sensitivity analysis of lidar inversion algorithms, Appl. Opt., 25, 2122-2125 https://doi.org/10.1364/AO.25.002122
  7. Cooper, D.I. and W.E. Eichinger (1994) Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations, J. Geophys. Res., 99, 22937-22948 https://doi.org/10.1029/94JD01944
  8. Draxler, R.R. and G.D. Hess (1999) An Overview of the Hysplit_4 Modeling System for Trajectories, Dispersion, and Deposition, Aust. Met. Mag., 47, 295 -308
  9. Fernald, F.G., B.M. Herman, and J.A. Reagan (1972) Deter-miantion of Aerosol Height Distribution by Lidar, J. Appl. Meteorol., 11, 482-489 https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2
  10. Fernald, F.G. (1984) Analysis of atmospheric lidar observations : Some comments, Appl. Opt. 23, 652-653 https://doi.org/10.1364/AO.23.000652
  11. Ferrare, R.A., D.D. Turner, L.H. Brasseur, W.F. Feltz. O. Dubovik, and T.P. Tooman (2001) Raman lidar measurements of the aerosol extinction-to-back-scatter ratio over the Southern Great Plains, J. Geophys. Res, 106, 20333-20347 https://doi.org/10.1029/2000JD000144
  12. Franke, K., A. Ansmann, D. Muller, D. Althausen, C. Venkataraman, M.S. Reddy, F. Wagner, and R. Scheele (2003) Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean, J. Geophys. Res., 108, 4059 https://doi.org/10.1029/2002JD002473
  13. Haywood, J.M. and V. Ramaswamy (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043-6058 https://doi.org/10.1029/97JD03426
  14. Hess, M., P. Koepke, and I. Schult (1998) Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831-844 https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  15. Kanamitsu, M., R.E. Kistler, and R.W. Reynolds (1997) NCEP/NCAR Reanalysis and the Use of Satellite Data. Adv. Space Res., 19(3), 481-490 https://doi.org/10.1016/S0273-1177(97)00059-8
  16. Klett, J.D. (1981) Stable analytical inversion solution for processing lidar returns, Appl. Opt. 20(2), 211-220 https://doi.org/10.1364/AO.20.000211
  17. Liu, Z., N. Sugimoto, and T. Murayama (2002) Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar, Appl, Opt. 41,2760-2767 https://doi.org/10.1364/AO.41.002760
  18. Muller, D., I. Mattis, A. Ansmann, B. Wehner, D. Althausen, and U. Wandinger (2004) Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photomter, J. Geophys. Res., 109, D13206 https://doi.org/10.1029/2003JD003914
  19. Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto (2004) Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophys. Res. Lett., 31, L23103 https://doi.org/10.1029/2004GL021105
  20. Muller, D., I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl (2005) Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res., D17201
  21. Mattis, I., A. Ansmann, D. Muller, U. Wandinger, and D. Althausen (2002) Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust, Geophys. Res. Lett., 29, 1306 https://doi.org/10.1029/2002GL014721
  22. Rosen, J.M. and N.T. Kjome(1997) Balloon-borne measurements of the aerosol extinction-to-backscatter ratio, J. Geophys. Res., 11165-11169
  23. Russell, P.B., T.J. Swissler, and M.P. McCormick (1979) Appl. Opt., 18, 3783 https://doi.org/10.1364/AO.18.003783
  24. Ryu, S.Y., J.E. Kim, H. Zhuanshi, and Y.J. Kim (2004) Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea, AWMA, 1124-1137
  25. Santacesaria, V., F. Marenco, D. Balis, A. Parayannis, and C. Zerefos (1998) Lidar observations of the Planetary Boundary Layer above the city of Thessaloniki, Greece, II Nuovo Gimento, 585-595
  26. Takamura, T., Y. Sasano, and T. Hayasaka (1994) Tropos-pheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements, Appl. Opt., 33, 7132-7141 https://doi.org/10.1364/AO.33.007132
  27. Torres, O., P.K. Bhartia, J.R. Herman, Z. Ahmad, and J. Gleason (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res. 103, 17099-17110 https://doi.org/10.1029/98JD00900
  28. Whiteman, D.N., S.H. Melfi, and R.A. Ferrare (1992) Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Applied Optics, Vol. 31