A Study on Selective Adsorption of Phenanthrene Dissolved in Triton X-100 Solution using Activated Carbons

활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구

  • Ahn, Chi-Kyu (School of Environmental Science and Engineering, POSTECH) ;
  • Kim, Young-Mi (School of Environmental Science and Engineering, POSTECH) ;
  • Woo, Seung-Han (Department of Chemical Engineering, Hanbat National University) ;
  • Park, Jong-Moon (School of Environmental Science and Engineering/Department of Chemical Engineering, POSTECH)
  • 안치규 (포항공과대학교 환경공학부) ;
  • 김영미 (포항공과대학교 환경공학부) ;
  • 우승한 (국립한밭대학교 화학공학과) ;
  • 박종문 (포항공과대학교 화학공학과/환경공학부)
  • Published : 2006.04.01

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widespread soil contaminants and major environmental concerns. PAHs have extremely low water solubility and are strongly sorbed to soil. A potential technology for remediation of PAHcontaminated soils is a soil washing with surfactant solutions. While the use of surfactants significantly enhances the performance of soil remediation, operation costs are increased. Selective adsorption of PAHs by activated carbons is proposed to reuse the surfactants in the soil-washing process. The adsorption isotherms of pure chemicals (Triton X-100 and phenanthrene) onto three granular activated carbons were obtained. The selective adsorption of phenanthrene in mixed solution was examined at various concentrations of phenanthrene and Triton X-100. The selectivity results were discussed with pore size distribution of activated carbons and molecular sizes of phenanthrene and the Triton X-100 monomer. The selectivity for phenanthrene was much larger than 1 regardless of the particle size of activated carbons. The selective adsorption using activated carbons with proper pore size distribution would greatly reduce the material cost for the soil washing process by the reuse of the surfactants.

다환방향족 탄화수소는 화석연료의 사용 등으로 자연계에 유출되며, 매우 낮은 용해도로 인해 토양과 강한 결합을 형성하여 장기적으로 영향을 준다. 이러한 PAHs로 오염된 토양을 복원하기 위해 계면활성제를 사용한 토양세척 공법을 사용하게 되며, 공정 시 계면활성제의 사용으로 전체 복원 비용이 증가하게 된다. 이에 토양복원 시 사용된 계면활성제의 재사용을 위한 연구들이 많이 진행되고 있다. 본 연구에서는 활성탄을 이용한 계면활성제 재사용 기술을 개발하였다. 활성탄으로는 원료물질과 활성방법이 같고 입자 크기가 다른 세 가지 GAC(Darco 4-12, 12-20, 20-40 메쉬)를 사용하였으며, PAH로는 phenanthrene을 계면활성제로는 Triton X-100을 사용하여 회분식으로 실험을 수행하였다. 이때 Triton X-100 용액에서 phenanthrene의 선택적 흡착정도를 보기위해 선택도를 사용하였다. 실험결과 입자 크기가 작을수록, 비표면적과 기공 부피가 클수록 높은 선택도를 나타내었다. 선택도는 세 활성탄 모두 1보다 높아 Triton X-100 용액으로부터 phenanthrene이 효과적으로 분리됨을 알 수 있었다. 본 연구의 결과, PAHs와 같은 소수성물질로 오염된 토양의 세척시 발생하는 계면활성제 용액을 적절한 특성을 가진 활성탄을 이용하면 오염물질을 선택적으로 제거시킬 수 있음을 알 수 있다. 따라서 활성탄을 이용한 선택적 흡착을 이용하면 토양 세척시 계면활성제 사용량을 줄이게 되어 복원 비용을 절감하는 효과를 가져올 것으로 예상된다.

Keywords

References

  1. An, Y.J., 2001, Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse, Environ. Prog., 20(4), 240-246 https://doi.org/10.1002/ep.670200412
  2. Anderson, W.C., 1993, Innovative site remediation technology: Soil washing/Soil Flushing, American Academy of Environmental Engineers, Annapolis, MD
  3. Beamson, G. and Briggs, D., 1992, High-resolution XPA of organic polymer, Wiley, Chichester, England
  4. Cerniglia, C.E., 1992, Bioremediation of polycyclic aromatic hydrocarbons, Biodegradation, 3, 351-368 https://doi.org/10.1007/BF00129093
  5. Chiou, C.T., Porter, P.E., and Schmedding, D.W., 1983, Partition equilibria of nonionic compounds between soil organic matter and water, Environ. Sci. Technol., 17(4), 227-231 https://doi.org/10.1021/es00110a009
  6. Edwards, D.A., Luthy, R.G., and Liu, Z., 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol., 25(1), 127-133 https://doi.org/10.1021/es00013a014
  7. Guha, S. and Jaffé, P., 1996, Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants, Environ. Sci. Technol., 30, 1382-1391 https://doi.org/10.1021/es950694p
  8. Huang, M.C., Chou, C.H., and Teng, H., 2002, Pore-size effects on activated-carbon capacities for volatile organic compound adsorption. AIChE J, 48(8), 1804-1810 https://doi.org/10.1002/aic.690480820
  9. Jafvert, C.T., 1996, Report: Surfactant/Cosolvent. Ground-Water Remediation Technologies Analysis Center, Document TE-96- 026
  10. Jonker, M.T.O. and Koelmans, A.A., 2002, Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: Mechanistic considerations, Environ. Sci. Technol. 36, 3725-3734 https://doi.org/10.1021/es020019x
  11. Kile, D.E. and Chiou, C.T., 1989, Water solubility enhancement of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration, Environ. Sci. Technol. 23(7), 832-838 https://doi.org/10.1021/es00065a012
  12. Karanfil, T. and Kilduff, J.E., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environ. Sci. Technol. 33(18), 3217-3224 https://doi.org/10.1021/es981016g
  13. Li, J.-L. and Chen, B.-H., 2002, Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants, Chem. Eng. Sci. 57, 2825-2835 https://doi.org/10.1016/S0009-2509(02)00169-0
  14. Lowe, D.F., Oubre, C.L. and Ward, C.H., 1999, Surfactants and Cosolvents for NAPL Remediation: A Technology Practices Manual, Lewis Publishers
  15. Lowe, D.F., Oubre, C.L. and Ward, C.H., 2000, Reuse of Surfactants and Cosolvents for NAPL Remediation, Lewis Publishers
  16. Narkis, N. and Ben-David, B., 1985, Adsorption of non-ionic surfactants on activated carbon and mineral clay, Water Res. 19(7), 815-824 https://doi.org/10.1016/0043-1354(85)90138-1
  17. Newcombe, G., Drikas, M., and Hayes R., 1997, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, Water Res. 31(5), 1065-1073 https://doi.org/10.1016/S0043-1354(96)00325-9
  18. Pastor-Villegas, J., Duran-Valle, C.J., Valenzuela-Calahorro, C., and Gomez-Serrano, V., 1998, Organic chemical structure and structural shrinkage of chars prepared from rockrose, Carbon 36(9), 1251-1256 https://doi.org/10.1016/S0008-6223(97)00200-5
  19. Riser-Roberts, E., Remediation of petroleum contaminated soils; Biological, Physical, and Chemical processes. Lewis publishers. Boca Raton, NY
  20. Robson, R.J. and Dennls, E.A., 1977, The size, shape, and hydration of nonionic surfactant micelles. Triton X-100. J. Phys. Chem. 81(11), 1075-1078 https://doi.org/10.1021/j100526a010
  21. Salame, I.I. and Bandosz, T.J., 1999, Study of water adsorption on activated carbons with different degree of surface oxidation, J. Colloid Interf. Sci. 210, 367-374 https://doi.org/10.1006/jcis.1998.5918
  22. Sander, L.C. and Wise, S.A., 1997, Polycyclic Aromatic hydrocarbon structure index. NIST special publication 922, Gaithersburg
  23. Shuler, M.L., and Kargi, F., 2002, Bioprocess Engineering: Basic concepts. 2nd Eds., Prentice Hall, NJ., 343-349
  24. Volkering, F., Breure, A.M., and Rulkens, W.H., 1998, Microbiological aspects of surfactant use for biological soil remediation, Biodegradation, 8, 401-417 https://doi.org/10.1023/A:1008291130109
  25. West, C.C. and Harwell, J.F., 1992, Surfactant and subsurface remediation, Environ. Sci, Technol., 26(12), 2324-2330 https://doi.org/10.1021/es00036a002
  26. Wu, S.H. and Pendleton, P., 2001, Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity, J. Colloid Interf. Sci., 243, 306- 315 https://doi.org/10.1006/jcis.2001.7905
  27. Yin, Y., and Allen, H.E., 1999, In situ Chemical Treatment (TE- 99-01), GWRTAC, Pittsburgh