Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment

생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험

  • HwangBo, Hyun-Wook (Department of Chemical Engineering, Kyungpook National University) ;
  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University) ;
  • Song, Dong-Ik (Department of Chemical Engineering, Kyungpook National University)
  • Published : 2006.04.01

Abstract

The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

생물벽체(biobarrier) 또는 원위치 미생물 필터(in situ microbial filter) 기술을 이용한 염소계 유기용매로 오염된 지하수의 복원 가능성을 회분식 실험을 통하여 살펴보았다. PCE의 환원성 탈염소화의 효율과 속도는 수소 농도에 의존하는 것으로 알려져 있다. 본 연구에서는 분변토와 토탄을 생물벽체로 이용한 PCE의 환원성 탈염소화시 전자공여체의 영향을 살펴보았다. 유기산(lactate, butyrate benzoate)과 yeast extract, 비타민 $B_{12}$가 PCE의 환원성 탈염소화에 미치는 영향을 조사하였다. 생물벽체 담체 비존재시, 전자공여체를 투여하지 않은 control 실험에 비해, 전자공여체의 첨가는 PCE의 탈염소화 속도를 촉진하였다. 전자공여체를 투여한 실험 중에서 lactate 또는 lactate/benzoate를 수소 공여체(hydrogen donor)로 첨가된 경우, 탈염소화 속도가 가장 빨랐다($k_1=0.0260{\sim}0.0266\;day^{-1}$). 분변토를 생물벽체로 사용한 경우, lactate/benzoate 첨가시 탈염소화 속도가 가장 빨랐으며, 겉보기 1차 분해속도상수($k_1$)는 $0.0849day^{-1}$였다. 반면, Pahokee peat을 생물벽체로 사용하였을 경우, butyrate 또는 lactate의 첨가시 탈염소화 속도가 가장 빨랐으며 $k_1$ 값은 각각 0.1092, $0.1067\;day^{-1}$로 나타났다. 본 연구결과로부터 분변토 또는 토탄을 원위치 생물벽체로 사용하여 염소계 유기용매로 오염된 지하수 처리의 잠재적인 응용 가능성을 알 수 있었다.

Keywords

References

  1. Ballapragada, B.S., Stensel, H.D., Puhakka, J.A., and Ferguson, J.F., 1997, Effect of hydrogen on reductive dechlorination of chlorinated ethenes, Environ. Sci. Technol., 31(6), 1728-1734 https://doi.org/10.1021/es9606539
  2. Binger, C.A., Martin, J.P., Allen-King, R.M., Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen J. Contam. Hydrol., 40, 137-158 https://doi.org/10.1016/S0169-7722(99)00047-9
  3. Brusseau, M.L. and Rao, P.S.C., 1991, Influence of sorbate structure on nonequilibrium sorption of organic compounds, Environ Sci Technol., 25, 1501-1506 https://doi.org/10.1021/es00020a022
  4. Brusseau, M.L., 1991, Cooperative sorption of organic chemicals in systems composed of organic carbon aquifer materials, Environ Sci Technol., 25, 1747-1752 https://doi.org/10.1021/es00022a011
  5. Burris, D.R., Delcomyn, C.A., Smith, M.H., and Roberts, A.L., 1996, Reductive dechlorination of tetrachloroethene and trichloroethylene catalyzed by vitamin $B_{12}$ in homogenous and heterogenous systems, Environ. Sci. Technol., 30(10), 3047-3052 https://doi.org/10.1021/es960116o
  6. Carr, C.S. and Hughes, J.B., 1998, Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity, Environ. Sci. Technol., 32, 1817-1824 https://doi.org/10.1021/es970985t
  7. Cornellison, G., Hassell, K.A., van Noorst, P.C.M., Kraaij, R., van Erkeren, P.J., Dijkema, C., de Jager, P.A., and Govers, H.A.J., 1997a, Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics, Environ. Pollut., 108, 69-80
  8. Cornellison, G., Rigterink, H., Vrind, B.A., ten Hulscher, D.Th.E.M., Ferdinary, M.M.A., and van Noorst, P.C.M., 1997b, Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminant sediment, Chemosphere, 35(10), 2405-2416 https://doi.org/10.1016/S0045-6535(97)00290-7
  9. Fennell, D.E. and Gossett, S.H., 1997, Comparison of butyric acid, ethnol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environ. Sci. Technol., 31(3), 918-926 https://doi.org/10.1021/es960756r
  10. Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on $K_{OC}$ correlations, Environ. Sci. Technol., 24(11), 1687-1693 https://doi.org/10.1021/es00081a010
  11. Guerin, W.F. and Boyd, S.A., 1992, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl. Environ. Microbiol., 58, 1142-1152
  12. Ho, Y. and McKay, G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum peat moss, Water Res., 34(3), 735-742 https://doi.org/10.1016/S0043-1354(99)00232-8
  13. House, J.S., 2002, Enhanced bioremediation of 1,1,2,2-tetrachloroethane in wetland soils, M.S. Thesis, Louisiana State University, Baton Rouge, LA, USA
  14. Hungate, R.E., 1969, A roll tube method for cultivation of strict anaerobes, In: Methods in Microbiology, Vol. 3b, Norris, J.R. and Robbins, D.W.(ed.), Academic Press, New York
  15. Isalou, M., Sleep, B.E., and Liss, S.N., 1998, Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system, Environ. Sci. Technol., 32(22), 3579-3585 https://doi.org/10.1021/es9803052
  16. Kao, C.M. and Lei, S.E., 2000, Using a peat biobarrier to remediate PCE/TCE contaminated aquifers, Water. Res., 34(3), 835- 845 https://doi.org/10.1016/S0043-1354(99)00213-4
  17. Kao, C.M., Chen, S.C., and Liu, J.K., 2001, Development of biobarrier for the remediation of PCE-contaminated aquifer, Chemosphere, 43, 1071-1078 https://doi.org/10.1016/S0045-6535(00)00190-9
  18. Kassenga, G.R., Pardue, J.H., Blair, S., and Ferraro, T., 2003, Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms, Ecol. Eng., 19, 305-353 https://doi.org/10.1016/S0925-8574(02)00122-2
  19. Kassenga, G.R., Pardue, J.H., Moe, W.M., and Bowman, K.S., 2004, Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands, Environ Sci. Technol. 38, 1024- 1030 https://doi.org/10.1021/es0348391
  20. Kim, Y-H. and Carraway, E.R., 2003, Dechlorination of chlorinated ethenes and acetylenes by palladized iron, Environ. Technol., 24, 809-819 https://doi.org/10.1080/09593330309385618
  21. Lendvay, J.M., Loffler, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., Shi, J., Krajmalnik-Brown, R., Major, C.L., Barcelona, M.J., Petrovskis, E., Hickey, R., Tiedje, J.M., and Adriaens, P., 2003, Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431 https://doi.org/10.1021/es025985u
  22. Li, J. and Werth, C.J., 2001, Evaluating competitive sorption mechanim of volatile organic compounds in soils and sediments using polymers and zeolites, Environ. Sci. Technol., 35, 569-574
  23. Li, J. and Werth, C.J., 2004, Slow desorption mechanism of volatile organic chemical mixtures in soil and sediment micropores, Environ. Sci. Technol., 38, 440-448 https://doi.org/10.1021/es034830z
  24. Lorah, M.M. and Olsen, L.D., 1999, Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence, Environ. Sci. Technol., 33, 227-234 https://doi.org/10.1021/es980503t
  25. Lorah, M.M. and Voytek, M.A., 2004, Degradation of 1,1,2,2- tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater, J. Contam. Hydrol., 70, 117-145 https://doi.org/10.1016/j.jconhyd.2003.08.010
  26. Lorah, M.M., Olsen, L.D., Capone, D.G., and Baker, J.E., 2001, Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments, Bioremediation J., 5, 101-118 https://doi.org/10.1080/20018891079221
  27. Nzengung, V.A., Nkedi-Kizza, P., Jessup, R.E., and Voudrias, E.A., 1997, Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays, Environ. Sci. Technol., 31, 1470-1475 https://doi.org/10.1021/es960720z
  28. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soil: Experimental design, Environ. Sci. Technol., 33, 1193-1199 https://doi.org/10.1021/es9806074
  29. Pardue, J.H., Kassenga, G.R., and Shin, W.S., 2000, Design approaches for chlorinated VOC treatment wetlands, In: Means, J.L. and Hinchee, R.E. (eds.). Wetlands and Remediation, An International Conference, Battelle Press, p. 301-308
  30. Schaefer, C.E. Schuth, C., Werth, C.J., and Reinhard, M., 2000, Binary desorption isotherm of TCE and PCE from silica gel and natural solids, Environ. Sci. Technol., 34, 4341-4347 https://doi.org/10.1021/es000875d
  31. Schollhorn, A., Savary, C., Stucki, G., and Hanselmann, K.W., 1997, Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions, Water. Res., 31, 1275-1282 https://doi.org/10.1016/S0043-1354(96)00130-3
  32. Shawabkeh, R.A. and Tutunji, M.F., 2003, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24(1-2), 111-120 https://doi.org/10.1016/j.clay.2003.09.001
  33. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1996, Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture, Environ. Sci. Technol., 30, 2850-2858 https://doi.org/10.1021/es9602455
  34. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethylene, Environ. Sci. Technol., 31, 918-926 https://doi.org/10.1021/es960756r
  35. Stuer-Lauridsen, F. and Pederson, F., 1997, On the influence of the polarity index of organic matter in predicting environmental sorption of chemicals, Chemosphere, 35(4), 761-773 https://doi.org/10.1016/S0045-6535(97)00197-5
  36. Taylor, R.T., Hanna, M.L., Shah, N.N., Shonnard, D.R., Duba, A.G., Durham, W.B., Jackson, K.J., Knapp, R.B., Wijesinghe, A.M., Knezovich, J.P., and Jovanovich, M.C., 1993, In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotropic microbial filter, Hydrological Sci. J., 38, 323-342 https://doi.org/10.1080/02626669309492678
  37. Warith, M.L., Fernandes, L., and Gaudet, N., 1999, Design of in-situ microbial filter for the remdediation of naphthalene, Waste Manage., 19, 9-25 https://doi.org/10.1016/S0956-053X(98)00080-4
  38. Wood, S., Trobaugh, D.J., and Carter, K.J., 1999, Polychlorinated biphenyl reductive dechlorination by vitamin $B_{12}s$: Thermodynamics and regiospecificity, Environ. Sci. Technol., 33, 857-863 https://doi.org/10.1021/es9804823
  39. Xing, B., McGill, W.B., and Dudas, M.J., 1994, Cross correlation of polarity curves to predict partition coefficients of nonionic contaminants, Environ. Sci. Technol., 28, 1929-1933 https://doi.org/10.1021/es00060a025
  40. Yang, Y. and McCarty, P.L., 1998, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Environ. Sci. Technol., 32, 3591-3597 https://doi.org/10.1021/es980363n
  41. Yerushalmi, L., Manuel, M.F., and Guiot, S.R., 1999, Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation, 10, 341-352 https://doi.org/10.1023/A:1008327815105
  42. Zou, S., Stensel, H.D., and Ferguson, J.F., 2000, Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin $B_{12}$ content, Environ. Sci. Technol., 34, 1751-1757 https://doi.org/10.1021/es990930m