DOI QR코드

DOI QR Code

Screening of Extracts from Red Algae in Jeju for Potentials MarineAngiotensin - I Converting Enzyme (ACE) Inhibitory Activity

  • Cha, Seon-Heui (Faculty of Applied Marine Science, Cheju National University) ;
  • Lee, Ki-Wan (Faculty of Applied Marine Science, Cheju National University) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2006.09.30

Abstract

This study was conducted to screen in vitro angiotensin - I converting enzyme (ACE) inhibitory activities of methanol (MeOH) and aqueous extracts at 20°C and 70°C, respectively, prepared from twenty-six red algae obtained from the coast of Jeju Island in Korea. Among aqueous extracts at 20°C (20AE) from red algae Lomentaria catenata showed the strongest ACE inhibitory activity and Lithophyllum okamurae recorded the second highest activity. From MeOH extract at 20°C (20ME) Ahnfeltiopsis flabelliformis possessed the strongest ACE inhibitory activity. Remarkable activities from MeOH extracts at 70°C (70ME) were observed in Grateloupia filicina, Sinkoraena lancifolia and Grateloupia lanceolata. However, no significant activity was found in aqueous extracts at 70°C (70AE). The IC50 values, which are concentrations required to inhibit 50% activity of ACE, for ACE inhibitory activities of 20AE from Lithophyllum okamurae and L. catenata were 13.78 and 12.21 μg mL–1, respectively. The IC50 values of 20ME from A. flabelliformis and Laurencia okamurae were 13.84 and 106.15 μg mL–1. Those of the 70ME from Bonnemaisonia hamifera, Grateloupia filicina, Sinkoraena lancifolia, G. lanceolata, Gracilaria vermiculophylla and L. okamurae ranged from 25.82 to 124.69 μg mL–1.

Keywords

References

  1. Angeles M., Bayon P., Alcaide J.M., Polo M.C. and Pueyo E. 2007. Angiotensin I - converting enzyme inhibitory compounds in white and red wines. Food Chem. 100: 43-47 https://doi.org/10.1016/j.foodchem.2005.09.007
  2. Athukorala Y. and Jeon Y.-J. 2005. Screening for Angiotensin 1-Converting Enzyme Inhibitory Activity of Ecklonia cava. J. Food Sci. and Nutr. 10: 134-139 https://doi.org/10.3746/jfn.2005.10.2.134
  3. Atkinson A.B. and Rovertson J. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. Lanc. 2: 836-839
  4. Cha S.H., Ahn G.N., Heo S.J., Kim K.N., Lee K.W., Song C.B., Cho S.K. and Jeon Y.J. 2006. Screening of extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin - I Converting Enzyme (ACE) Inhibitory Activity. J. Korean Soc. Food Sci. Nutr. 35: 307-314 https://doi.org/10.3746/jkfn.2006.35.3.307
  5. Curtiss C., Chon J.N., Vrobel T. and Francious J.A. 1978. Role of the rennin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58: 763-770 https://doi.org/10.1161/01.CIR.58.5.763
  6. Cushman D.W. and Cheung H.S. 1971. Spectrophotometric assay and properties of the angiotensin-conveting enzyme of rabbit lung. Biochemical Pharmacology 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  7. Dzau V.J. 2001. Tissue Angiotensin and Pathobiology of Vascular Disease: A Unifying Hypothesis. Hypertension 37:1047-1052 https://doi.org/10.1161/01.HYP.37.4.1047
  8. Fujita H and Yokoyama M. 2000. Classification and antihypertensive activity of angiotensin I - converting enzyme inhibitory peptide derived from food proteins. J. Food Sci. 65: 564-569 https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
  9. Ikeda K., Kitamura A., Machida H., Watanabe M., Negishi H., Hiraoka J. and Nakano T. 2003. Effect of Undaria pinnatifida (WAKAME) on the development of cerebrovascular disease in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharm. and physic. 30: 44-48 https://doi.org/10.1046/j.1440-1681.2003.03786.x
  10. Je J.Y., Park P.J., Byun H.G., Jung W.K. and Kim S.K. 2005. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bior. Tech. 96: 1624-1629 https://doi.org/10.1016/j.biortech.2005.01.001
  11. Joshipura K.J., Hu F.B. and Manson J.E. 2001. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 134: 1106-1114 https://doi.org/10.7326/0003-4819-134-12-200106190-00010
  12. Jung W.K., Je J.Y., Park P.J., Son B.W., Kim H.C., Choi Y.K. and Kim S.K. 2004. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Che. 94: 26-32
  13. Kato H. and Susuki T. 1971. Bradykinin-potentiatinf peptides from venom of Agkistrodon- halys blomhoffii: Isolation of five bradykinin potentiators B and C. Bioche. 10: 972-980 https://doi.org/10.1021/bi00782a007
  14. Kim D.-S., Park D.-C. and Do J.-R. 2002. Angiotensin I converting enzyme inhibitory activity of Krill (Euphausia superba) Hydrolysate. Fisheries Sci. and tech. 5: 21-27 https://doi.org/10.5657/fas.2002.5.1.021
  15. Kunio S. and Takahisa N. 2000. Identification of an antihypertensive peptide from peptic digest of Wakame (Undaria pin-natifida). J. Nutr. Biochem. 11: 450-456 https://doi.org/10.1016/S0955-2863(00)00110-8
  16. Kunio S., Keisei M. and Chen J.R. 2004. Antihypertensive effects of Undaria pinnatifida (Wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15:267-272 https://doi.org/10.1016/j.jnutbio.2003.11.004
  17. Lee T.G, Yeum D.M. and Kim S.B. 2002. Characteristics of angiotensin converting enzyme inhibitory peptides from thermolysin hydrolysate of manila clam, Ruditapes philippinarum proteins. J. of Korean Fish. Soc. 35: 529-533 https://doi.org/10.5657/kfas.2002.35.5.529
  18. Liu J.C., Hsu F.L., Tsai J.C., Chan P., Liu J.Y., Thomas G.N., Tomlinson B., Lo M.Y. and Lin J.Y. 2003. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 73: 1543-1555 https://doi.org/10.1016/S0024-3205(03)00481-8
  19. Maruyama S., Mitachi H., Awaya J., Kurono M., Tomizuka N. and Suzuki H. 1989. Angiotensin I - converting enzyme inhibitory activity of the C-terminal hexapeptide of $\alpha$s1-casein. Agri. and Biol. Chem. 53: 2107-2114 https://doi.org/10.1271/bbb1961.53.2107
  20. Miyoshi S., Ishikawa H., Kaneko T., Fukui F., Tanaka H. and Maruyama S. 1991. Structure and activity of angiotensinconverting enzyme inhibitors in an $\alpha$-zein hydrolysate. Agr. and Biol. Chem. 55: 1313-1318 https://doi.org/10.1271/bbb1961.55.1313
  21. Mustafa M.G. and Nakagawa H. 1995. A review: Dietary benefits of algae as an additive in fish feed. The Isreali J. of Aqua. 47: 155-162
  22. Mustafa M.G., Wakamatsu S., Takeda T.A., Umino T. and Nakagawa H. 1995. Effects of algae meal as feed additive on growth, feed efficiency, and body composition in Red Sea Bream. Fish. Sci. 61: 25-28 https://doi.org/10.2331/fishsci.61.25
  23. Nakano T., Hidaka H., Ucjida J., Nakajima K. and Hata Y. 1998. Hypetensive effects of wakame. J. Jpn. Soc. Clin. Nutr. 20:92
  24. Ondetti M.A. 1977. Desine of specific inhibitors of angiotensincoverting enzyme: New ckass of orally active antihypetensive agents. Sci. 196: 441-444 https://doi.org/10.1126/science.191908
  25. Ondetti M.A., Rubin B. and Cushman D.W. 1982. Enzyme of the rennin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51: 283-308 https://doi.org/10.1146/annurev.bi.51.070182.001435
  26. Rencland R. and Lithell H. 1994. Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand. J. Clin. Lab. Invest. 54: 105-111 https://doi.org/10.3109/00365519409086516
  27. Sato M., Hoskawa T., Yamagichi T., Nakano T., Muramoto K. and Kahara T. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from Wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J of Agri. and Food Chem. 50: 6245-6252 https://doi.org/10.1021/jf020482t
  28. Sawayama T, Itokawa A., Shumada K., Doi Y., Kimura K. and Nishimura H. 1990. Synthesis of 1-[(s)-acetylthio-2-methylpropanoyl]-L-propyl-L-phenylanine (Alacepril) and one of its active metabolites, the desacetyl derivation (DU-1227). Chem. Pharm. Bull. 38: 529-531 https://doi.org/10.1248/cpb.38.529
  29. Seppo L., Jauhiainen T., Poussa T. and Korpela R. 2003. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American J. of Clin. Nutr. 77: 326-330 https://doi.org/10.1093/ajcn/77.2.326
  30. Shin Z.-I., Yu R., Park S.-A., Chung D.-K., Nam S.-H. and Kim K.-S. 2001. His-His-Leu, an angiotensin I-converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. of Agr. and Food Chem. 49: 3004-3009 https://doi.org/10.1021/jf001135r
  31. Ukeda H., Matsuda H., Kuroda H., Osajima K., Matsufuji H. and Osajima Y. 1991. Preparation and separation of angiotensin I converting enzyme inhibitory peptides. Nippon Noge. Kai. 65: 1223-1228 https://doi.org/10.1271/nogeikagaku1924.65.1223

Cited by

  1. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata vol.107, 2017, https://doi.org/10.1016/j.fct.2017.04.001
  2. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits vol.36, pp.6, 2010, https://doi.org/10.1002/biof.114
  3. Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet vol.90, 2016, https://doi.org/10.1016/j.fct.2016.01.023
  4. Antioxidants from macroalgae: potential applications in human health and nutrition vol.25, pp.4, 2010, https://doi.org/10.4490/algae.2010.25.4.155
  5. A review of antihypertensive and antioxidant activities in macroalgae vol.53, pp.5, 2010, https://doi.org/10.1515/bot.2010.044
  6. Seasonal Variation in Community Structure of Subtidal Seaweeds in Jeju Island, Korea vol.46, pp.5, 2013, https://doi.org/10.5657/KFAS.2013.0607
  7. Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods vol.13, pp.11, 2015, https://doi.org/10.3390/md13116838
  8. The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties vol.134, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2012.04.105
  9. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction vol.13, pp.6, 2015, https://doi.org/10.3390/md13063422
  10. Potential pharmacological applications of polyphenolic derivatives from marine brown algae vol.32, pp.3, 2011, https://doi.org/10.1016/j.etap.2011.09.004
  11. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry vol.8, pp.4, 2010, https://doi.org/10.3390/md8041080
  12. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata vol.14, pp.2, 2016, https://doi.org/10.3390/md14020032
  13. Screening of Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from Caulerpa lentillifera vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23113005
  14. Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders vol.16, pp.8, 2018, https://doi.org/10.3390/md16080250