Effect of the Processed Selaginella tamariscina on Antioxidation and Inhibition of Matrix Metalloproteinase

수치에 의한 권백의 항산화 효과와 MMP 발현 저해 효과

  • 이범천 (한불화장품(주) 기술연구소) ;
  • 심관섭 (한불화장품(주) 기술연구소) ;
  • 김진희 (한불화장품(주) 기술연구소) ;
  • 김진화 (한불화장품(주) 기술연구소) ;
  • 표형배 (한불화장품(주) 기술연구소)
  • Published : 2006.06.30

Abstract

Selaginella tamariscina with the popular Korean name Keoun Back, is a traditional medicinal plant for therapy of advanced cancer patients in the Orient. In this study, we evaluated anti-aging activity of S. tamariscina using processed technology and investigated diverse biological activities of processed S. tamariscina (PST) as an anti-aging ingredient of cosmetics. PST, heated with sand, used to different purpose compared with origin in medicine. PST raises total phenol concentration and enhances the DPPH radical scavenging activity. For testing intracellular ROS scavenging activity, the cultured human dermal fibroblasts were analyzed by increase in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20 mJ/cm^2$ after treatment of PST. UVA-induced MMP-1 expression in human dermal fibroblasts was reduced in a dose-dependent manner by PST. Taken together, 4hese results suggest that PST may act as an anti-aging agent by preventing the skin cell from damage induced by UV irradiation, and imply that PST may be useful as a new ingredient for anti-aging cosmetics.

권백은 동양에서 암환자 치료를 위한 전통 약용식물로 알려져 있다. 본 연구에서는 포제기술을 이용한 권백을 항노화 화장품 소재로 적용하고자 다양한 생물학적활성을 평가하였다. 열과 모래를 이용한 포제 권백은 기존 권백을 다른 목적으로 이용하고자 비교하였다. 포제 권백은 페놀함량이 증가하였고 DPPH 라디칼 소거활성도 증가하였다. 세포내 활성산소 소거평가를 위해 사람 섬유아세포를 배양하여 UVB($20 mJ/cm^2$)에 의해 증가된 세포내 활성산소가 포제 권백을 처리함으로써 활성 산소 소거효과가 증가하였다. 사람 섬유아세포에서 UVA에 의해 발현되는 MMP-1효소는 포제 권백에 의해 농도 의존적으로 감소하였다. 결론적으로 포제 권백은 페놀함량의 증가와 항산화 효과가 증가하였고, 자외선에 의한 세포손상을 보호하여 항노화 화장품의 새로운 소재로 이용될 것으로 사료된다.

Keywords

References

  1. I. S. Lee, A. Nishikawa, F.Furukawa, K. I. Kasa- hara, and S. U. Kim, Effects of Selaginella tama- riscina on in vitro tumor cell growth, p53 expression, Gl arrest and in vivogastric cell proliferation, Cancer letters, 144, 93 (1999) https://doi.org/10.1016/S0304-3835(99)00202-5
  2. D. I. Shin and J. Kim, Flavonid constituents of Selaginella tamariscina, Kor. J Pharmacogn., 22, 207 (1991)
  3. 강병수, 서부일, 최호영, 한약포제와 임상응용, 영림사, 15 (2003)
  4. 김기영, 송호준, 한약포제학, 신일상사, 35 (2002)
  5. L. Vernon, Singleton, O. Rudolf, and M. L. Rosa, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folinciocalteu Reagent, Methods in Enzymology, 299, 152 (1999)
  6. T. Shinya, T. Tomoyuki, K. Waka, R. Neil, F. Lai, O. Munetaka, A. Shinya H. Hiroshi, I. Okezie, Aruoma, and B. Theeshan, Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes, Free radical Research, 37, 1215 (2003)
  7. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958) https://doi.org/10.1038/1811199a0
  8. S. Y. Sea, E. Y. Kim, H. Kim, and B. J. Gwang, Neuroprotective effect of high glucose agains NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials, J. Neurosci., 19, 8349 (1999)
  9. I. D. Trayner, A. P. Rayner, G. E. Freeanm, and E. Farzaneh, Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate (H2DCFDA) or clihydrorhoclamine 123 (H2R123), J. Immunological Methods, 186, 275 (1995) https://doi.org/10.1016/0022-1759(95)00152-Z
  10. H. Masaki, S. Sakaki, T. Atsumi, and H. Sakurai, Active oxgen scavenging activity of plant extracts, Biol. Pharm Bull., 18, 162 (1995) https://doi.org/10.1248/bpb.18.162
  11. Y. Cai, Q. Lua, M. Sun, and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Science, 74, 2157 (2004) https://doi.org/10.1016/j.lfs.2003.09.047
  12. Y. Tampa, S. Kotamraju, C. R. Chitambar, S. V. Kalivendi, A. Keszler, J. Joseph, and B. Kalyanaraman, Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells, Circ. Res., 92, 56 (2003) https://doi.org/10.1161/01.RES.0000048195.15637.AC
  13. S. J. Kondo, The roles of cytokines in photoaging, J. Dermatol. Sci., 23, S30 (2000) https://doi.org/10.1016/S0923-1811(99)00076-6
  14. S. E. Fligiel, J. Varani, S. C. Datta, S. W. Kang, G. J. Fisher, and J. J. Voorhees, Collagen degradation of in aged/photodamaged skin inandtol in vitro, J. Invest. Dermatol., 120, 842 (2003) https://doi.org/10.1046/j.1523-1747.2003.12148.x
  15. G. J. Fisher, H. S. Talwar, J. Lin, P. Lin, P. Mcphillips, Z. Q. Wang, X. Li, Y. Wan, S. W. Kang, and J. J. Voorhees, Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo, J. Clin Invest., 101, 1432 (1998) https://doi.org/10.1172/JCI2153