The Summer Distribution of Picophytoplankton in the Western Pacific

하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구

  • 노재훈 (한국해양연구원 해양환경연구본부) ;
  • 유신재 (한국해양연구원 해양환경연구본부) ;
  • 강성호 (한국해양연구원 부설 극지연구소)
  • Published : 2006.03.01

Abstract

The effect of environmental forcing on picophytoplankton distribution pattern was investigated in the tropical and subtropical western Pacific (TSWP) and the East Sea in September, 2002, and the continental shelf of the East China Sea (C-ECS) in August, 2003. The abundance of picophytoplankton populations, Synechococcus, Prochlorococcus and picoeukaryotes were determined by flow cytometry analyses. Picophytoplankton vertical profiles and integrated abundance $(0\sim100\;m)$ were compared with these three physiochemically different regions. Variation patterns of integrated cell abundance of Synechococcus and Prochlorococcus in these three regions showed contrasting results. Synechococcus showed average abundance of $84.5X10^{10}\;cells\;m^{-2}$, in the TSWP, $305.6X10^{10}\;cells\;m^{-2}$ in the C-ECS, and $125.4X10^{10}\;cells\; m^{-2}$ in the East Sea where increasing cell concentrations were observed in the region with abundant nutrient. On the other hand, Prochlorococcus showed average abundance of $504.5X10^{10}\;cells\;m^{-2}$ in the TSWP, $33.2x10^{10}\;cells\;m^{-2}$ in the C-ECS, and $130.2X10^{10}\;cells\;m^{-2}$ in the East Sea exhibiting a distinctive pattern of increasing cell abundance in oligotrophic warm water. Although picoeukaryotes showed a similar pattern to Synechococcus, the abundance was 1/10 of Synechococcus. Synechococcus and picoeukaryotes showed ubiquitous distribution whereas Prochlorococcus generally did not appear in the C-ECS and the East Sea with low salinity environment. The average depth profiles for Synechococcus and Prochlorococcus displayed uniform abundance in the surface mixed layer with a rapid decrease below the surface mixed layer. for Prochlorococcus, a similar rapid decreasing trend was not observed below the surface mixed layer of the TSWP, but Prochlorococcus continued to show high cell abundance even down to 100 m depth. Picoeukaryotes showed uniform abundance along $0\sim100\;m$ depth in the C-ECS, and abundance maximum layer appeared in the East Sea at $20\sim30\;m$ depth.

환경특성이 초미소 식물플랑크톤의 분포에 미치는 영향을 파악하기 위해 서태평양의 열대와 아열대 수역(TSWP)과 동해에서 2002년 9월 조사를 하였고, 동중국해 대륙붕수역 (C-ECS)은 2003년 8월에 조사를 수행하였다. 초미소 식물플랑크톤은 flow cytometry 방법을 이용 Synechoroccus, Prorhlorococcus 그리고 picoeukaryotes의 3개체군으로 구분 계수하였다. 물리화학적 환경이 상이한 3곳의 조사수역 별로 초미소 식물플랑크콘들의 수직분포, 100m 수심까지 적분된 풍도를 비교하였다. 분석결과 synechococcus와 Prochlorococcus의 적분된 개체수는 3곳의 조사수역에서 서로 상반되는 결과를 보였다. Synechococcus는 TSWP에서 정점평균 $84.5X10^{10}\;cells\;m^{-2}$의 풍도를, C-ECS에서 $305.6X10^{10}\;cells\;m^{-2}$를 동해에선 $124.5X10^{10}\;cells\;m^{-2}$의 풍도를 보여 영영염이 풍부한 지역에서 풍도가 증가하는 경향을 보였다. 이에 반해 Prochlorococcus는 빈 영양 환경의 TSWP에서 $504.5X10^{10}\;cells\;m^{-2}$의 가장 높은 풍도를 보였으며, 영양염 환경이 양호한 C-ECS에서 낮은 풍도를 보이는 독특한 분포양상을 나타냈다. Picoeukaryotes는 Synechococcus와 유사한 지역적 변화를 보였으나 풍도는 약 1/10정도를 나타냈다. Synechococcus와 picoeukaryotes는 모든 정점에서 출현한 반면 Prochlorococcus는 일반적으로 C-ECS와 동해의 저염 환경에서 출현하지 많았다. Synechococcus와 Prochlorococcus의 수층별 평균 풍도의 수직분포는 표면 혼합층에서 유사한 수준을 보이다 이심에서 급격한 감소를 나타냈다. 그러나 TSWP에선 풍도의 급격한 감소가 나타나지 많고 100 m 수심까지 높은 풍도를 나타냈다. Picoeukaryotes는 C-ECS에서 100 m까지 유사한 수준의 풍도를 보였으며, 동해의 $20\sim30\;m$ 수심에선 최대 풍도층이 나타났다.

Keywords

References

  1. Agawin NSRA, CM Duarte and S Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45:591-600 https://doi.org/10.4319/lo.2000.45.3.0591
  2. Campbell L, HA Nolla and D Vault. 1993. Photosynthetic picoplankton community structure in the subtropical north Pacific Ocean near Hawaii (station ALOHA), Deep-Sea Res. I. 40:2043-2060 https://doi.org/10.1016/0967-0637(93)90044-4
  3. Carpenter EJ and DG Capone. 1983. Nitrogen in the Marine Environments. John Wiley and Sons. New York, pp.900
  4. Chisholm SW, RJ Olson, ER Zetter, R Goerike, JB Waterburry and NA Welschmeyer. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340-343 https://doi.org/10.1038/334340a0
  5. Chisholm SW, SL Frankel, R Goerike, RJ Olson, B Palenik, JB Waterburry, L West-Johnsrud and ER Zetter. 1992. Prochlorococcus marinus Nov. Gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll-a and b. Arch. Microbiol. 157:297-300 https://doi.org/10.1007/BF00245165
  6. Goericke Rand DJ Repeta. 1993. Chlorophylls a and band divinyl chlorophylls a and b in the open subtropical north Atlantic Ocean. Mar. Ecol. Prog. Ser. 101:307-313 https://doi.org/10.3354/meps101307
  7. Jiao N, Y Yang, H Koshikawa and M Watanabe. 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aq. Microb. Ecol. 30:37-48 https://doi.org/10.3354/ame030037
  8. Jiao N, Y Yang, N Hong, Y Ma, S Harada, H Koshikawa and M Watanabe. 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Cont. Shelf Res. 25: 1265-1279 https://doi.org/10.1016/j.csr.2005.01.002
  9. Johnson PW and J McN Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24:928-935 https://doi.org/10.4319/lo.1979.24.5.0928
  10. Kang JH, WS Kim, KI Chang and JH Noh. 2004. Distribution of plankton related to the mesoscale physical structure with in the surface mixed layer in the southwestern East Sea, Korea. J. Plankton Res. 26:1515-1528 https://doi.org/10.1093/plankt/fbh140
  11. Kim K, YG Kim, YK Cho, M Takematsu and Y Volkov. 1999. Basin-to-basin and year-to-year variation of temperature and salinity characteristics in the East Sea. J. Oceanogr. 55: 103-109 https://doi.org/10.1023/A:1007873525552
  12. Landry MR, J Kirshtein and J Constantinou. 1996. Abundance and distribution of picoplankton in the central equatorial Pacific from $12^{\circ} N $ to $12^{\circ} S $, $140^{\circ} W $. Deep-Sea Res. II. 43:871-890 https://doi.org/10.1016/0967-0645(96)00018-5
  13. Li WKW and AM Wood. 1988. Vertical distribution of North Atlantic ultraphytoplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Res. I. 35:1615-1638 https://doi.org/10.1016/0198-0149(88)90106-9
  14. LIE HJ and CH Cho. 1994. On the origin of the Tsushima Warm Current. J. Geopys. Res. 99:25081-25091 https://doi.org/10.1029/94JC02425
  15. Marie D. N Simon, L Guillou, F Partensky and D Vaulot. 2000. Flow cytometry analysis of marine picoplankton. In: Living Colors: Protocols in Flow Cytometry and Cell sorting. ed. by Diamond, R.A. and S. DeMaggio. Springer Verlag. pp. 421-454
  16. Moon-van der Staay SY, GWM van der Staay, L Guillou, D Vaulot, H Caustre and LK Medlin. 2000. Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol. Oceanogr. 45:98-109 https://doi.org/10.4319/lo.2000.45.1.0098
  17. Moore LR, R Goericke and SW Chisholm. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Eco. Prog. Ser. 116:259-275 https://doi.org/10.3354/meps116259
  18. Moore LR, G Rocap and SW Chisholm. 1998. Physiology and molecular physiology of coexisting Prochlorococcus ecotypes. Nature 393:464-467 https://doi.org/10.1038/30965
  19. Moore LR and SW Chisholm. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotype differences among cultured isolates. Limnol. Oceanogr. 44:628-638 https://doi.org/10.4319/lo.1999.44.3.0628
  20. Moore LR, AF Post, G. Rocap and SW Chisholm. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47:989-996 https://doi.org/10.4319/lo.2002.47.4.0989
  21. Nitani H. 1972. Beginning of the Kuroshio. in Kuroshio, Its Physical Aspects, ed. by H. Stommel and K. Yoshida, Univ. of Tokyo Press. Tokyo. pp. 129-163
  22. Noh JH, SJ Yoo, MJ Lee, SK Son and WS Kim. 2004. A flow cytometric study of autotrophic picoplankton in the tropical eastern Pacific. Ocean Polar Res. 26:273-286 https://doi.org/10.4217/OPR.2004.26.2.273
  23. Noh JH, SJ Yoo, JA Lee, HC Kim and JH Lee 2005. Phyto-plankton in the waters of the leodo Ocean Research Station determined by microscopy, flow cytometry, HPLC pigment data and remote sensing. Ocean Porar Res. 27:397-417 https://doi.org/10.4217/OPR.2005.27.4.397
  24. Not F, N Simon, IC Biegala and D Vaulot. 2002. Application of fluorescent in situ hybridization coupled with tyramidesignal amplification (FISH- TSA) to assess eukaryotic picoplankton composition. Aquat. Microb. Ecol. 28: 157-166 https://doi.org/10.3354/ame028157
  25. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. New York. pp. 173
  26. Olson RJ, SW Chisholm, ER Zettler, MA Altabet and JA Dusenberry. 1990a. Spatial and temporal distributions of prochlorophyte picoplankton in the north Atlantic Ocean. Deep-Sea Res. I. 37: 1033-1051 https://doi.org/10.1016/0198-0149(90)90109-9
  27. Olson RJ, SW Chisholm, ER Zettler and EV Amburst. 1990b. Pigment, size, and distribution of Synechococcus in the north Atlantic and Pacific Ocean. Limnol. Oceanogr. 35:45-58 https://doi.org/10.4319/lo.1990.35.1.0045
  28. Pan LA, LH Zhang, J Zhang, MG Josep and M Chao. 2005. On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS. Microb. Ecol. 52:243-253 https://doi.org/10.1016/j.femsec.2004.11.019
  29. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. New York. pp.173
  30. Partensky F, N Hoepffener, WKW Li, O Ulloa and D Vaulot. 1993. Photoacclimination of Prochlorococcus sp. (Prochlorophyta) strains isolated from the north Atlantic and Mediterranean Sea. Plant Physiol. 101:285-296 https://doi.org/10.1104/pp.101.1.285
  31. Partensky F, J Blanchot and D Vaulot. 1999a. Differential distribution of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Marine cyanobacteria. ed. by Charpy, L, and A.W.D. Larkum. Bull. L'Institut, Oceanogr. Monaco. 19:457-475
  32. Partensky F, WR Hess and D Vaulot. 1999b. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Bio. Rev. 63: 106-127
  33. Romari K and D Vaulot. 2004. Composition and temporal valiability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49:784-798 https://doi.org/10.4319/lo.2004.49.3.0784
  34. Shimada A, T Hasrgawa, I Urneda, N Kadoya and T Maruyama. 1993. Spatial mesoscale patterns of west Pacific picophytoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima. Mar. Bio. 115:209-215 https://doi.org/10.1007/BF00346337
  35. Vaulot D, F Partensky, J Neveux, RFC Mantoura and CA Llewellyn. 1990. Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol. Oceanogr. 35:1156-1164 https://doi.org/10.4319/lo.1990.35.5.1156
  36. Waterbury JB, SW Watson, RRL Guillard and LE Bland. 1979. Widespread occuuence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293-294 https://doi.org/10.1038/277293a0
  37. West NJ, AS Wilhelm, NJ Fuller, RI Amann, R Rippka, AF Post and DJ Scanlan. 2001. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRN A-targeted oligonucleotides. Microbiology 147:1731-1744 https://doi.org/10.1099/00221287-147-7-1731
  38. Zhang J. 1996. Nutrient elements in large Chinese estuaries. Cont. Shelf Res. 16: 1023-1045 https://doi.org/10.1016/0278-4343(95)00055-0