Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University) ;
  • Rhee Sung-Keun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology, Chungbuk National University) ;
  • Bae Jin-Woo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Baek Jong-Hwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Park Yong-Ha (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2006.02.01

Abstract

The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

Keywords

References

  1. Ahn, Y. and S. Park. 2003. Microbial and physicochemical monitoring of granular sludge during start-up of thermophilic UASB reactor. J. Microbiol. Biotechnol. 13: 378-384
  2. Akcil, A. 2003. Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnol. Adv. 21: 501-511 https://doi.org/10.1016/S0734-9750(03)00099-5
  3. Aronstein, B. N., A. Maka, and V. J. Srivastava. 1994. Chemical and biological removal of cyanides from aqueous and soil-containing systems. Appl. Microbiol. Biotechnol. 41: 700-707 https://doi.org/10.1007/BF00167288
  4. Bae, J. W., J. J. Kim, C. O. Jeon, K. Kim, J. J. Song, S. G. Lee, H. Poo, C. M. Jung, Y. H. Park, and M. H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1012
  5. Bose, P., M. A Bose, and S. Kumar. 2002. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Adv. Environ. Res. 7: 179-195 https://doi.org/10.1016/S1093-0191(01)00125-3
  6. Clescerl, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington
  7. Eichner, C. A., R. W. Erb, K. N. Timmis, and I. Wagner- Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109
  8. Gijzen, H. J., E. Bernal, and H. Ferrer. 2000. Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Water Res. 34: 2447-2454 https://doi.org/10.1016/S0043-1354(99)00418-2
  9. Gurbuz, F., H. Ciftci, A. Akcil, and A. G. Karahan. 2004. Microbial detoxification of cyanide solutions: A new biotechnological approach using algae. Hydrometallurgy 72: 167-176 https://doi.org/10.1016/j.hydromet.2003.10.004
  10. Hugenholtz, P., G. W. Tyson, R. I. Webb, A. M. Wagner, and L. L. Blackall. 2001. Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67: 411-419 https://doi.org/10.1128/AEM.67.1.411-419.2001
  11. Ibekwe, A. M. and C. M. Grieve. 2004. Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 48: 239- 248 https://doi.org/10.1016/j.femsec.2004.01.012
  12. Ingvorsen, K., B. Hjer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57: 1783-1789
  13. Kakii, K., K. Tsuchiya, K. Otozuki, E. Toriumi, and K. Watanabe. 2000. Mechanisms of microbial aggregation in activated sludge and biofilm processes. In: Proc. Reg. Symp. on Chemical Engineering, December 11-13, Singapore, bp1.1
  14. Kim, B. S., H. M. Oh, H. J. Kang, S. S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
  15. Malik, A., M. Sakamoto, T. Ono, and K. Kakii. 2003. Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. J. Biosci. Bioeng. 96: 10-15 https://doi.org/10.1016/S1389-1723(03)90090-9
  16. Morozzi, G. and G. Cenci. 1978. Comparison of the toxicity of some metals and their tetracyanide complexes on the respiration of non acclimated activated sludges. Zentralbl. Bakteriol. 167: 478-488
  17. Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural communities. Curr. Opin. Microbiol. 2: 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
  18. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 56: 695-700
  19. Patil, Y. B. and K. M. Paknikar. 1999. Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotechnol. Lett. 21: 913-919 https://doi.org/10.1023/A:1005550707798
  20. Quan, Z. X., J. W. Bae, S. K. Rhee, Y. G. Cho, and S. T. Lee. 2004. Toxicity and degradation of metal-complexed cyanide by a bacterial consortium under sulfate-reducing conditions. Biotechnol. Lett. 26: 1007-1011 https://doi.org/10.1023/B:BILE.0000030048.04282.da
  21. Rollinson, G., R. Jones, M. P. Meadows, R. E. Harris, and C. J. Knowles. 1987. The growth of a cyanide-utilizing strain of Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol. Lett. 40: 199-205 https://doi.org/10.1111/j.1574-6968.1987.tb02025.x
  22. Rossello-Mora, R. A., M. Wagner, and R. Amann. 1995. The abundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61: 702-707
  23. Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana
  24. Silva-Avalos, J., M. G. Richmond, D. Nagappan, and D. A. Kunz. 1990. Degradation of the metal cyano-complex of tetracyano-nickelate (II) by cyanide utilizing bacterial isolates. Appl. Environ. Microbiol. 56: 3664-3670
  25. Smith, N. R., Z. Yu, and W. W. Mohn. 2003. Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Res. 37: 4873-4884 https://doi.org/10.1016/j.watres.2003.08.019
  26. Volotovskky, V. and N. Kim. 2003. Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J. Microbiol. Biotechnol. 13: 373-377
  27. Wang, C. C., C. M. Lee, and L. J. Chen. 2004. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 39: 1767-1779 https://doi.org/10.1081/ESE-120037876
  28. Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol. 64: 4396-4402
  29. White, D. M., T. A. Pilon, and C. Woolard. 2000. Biological treatment of cyanide containing wastewater. Water Res. 34: 2105-2109 https://doi.org/10.1016/S0043-1354(99)00362-0
  30. Whitlock, J. L. 1990. The advantages of biodegradation of cyanides. J. Metals 41: 46-47
  31. Yilmaz, E. I. 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 154: 409- 415 https://doi.org/10.1016/S0923-2508(03)00116-5