Selection and Characterization of Peptides Specifically Binding to $TiO_2$ Nanoparticles

  • Seo Min-Hee (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studie) ;
  • Lee Jong-Ho (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studie) ;
  • Kim Min-Soo (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studie) ;
  • Chae Hee-K. (Department of Chemistry Education, Seoul National University) ;
  • Myung Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studie)
  • Published : 2006.02.01

Abstract

We have screened phage display peptide libraries to select for peptides binding to various sized $TiO_2$ nanoparticles. Phage libraries displaying random 7mer, 12mer, and C-7-Cmer peptides were used for screening. The size of target $TiO_2$ particles used were 7 nm, 15 nm, and 25 nm in diameter. We could select peptides binding each nanoparticles from all 3 libraries. Their binding was confirmed by transmission electron microscopy (TEM). Each peptide investigated was also shown to bind the other sized particles, meaning that the binding was specific for the nature of the particle rather than for the size of it. One of the 7mer peptides (PEP9, SVSPISH) was chosen for further analysis. The binding was shown to be in a dose-dependent manner, suggesting a specific interaction.

Keywords

References

  1. Cesareni, G. 1992. Peptide display on filamentous phage capsids: A new powerful tool to study protein-ligand interaction. FEBS Lett. 307: 66-70 https://doi.org/10.1016/0014-5793(92)80903-T
  2. Conrad, U. and J. Scheller. 2005. Considerations on antibody-phage display methodology. Comb. Chem. High Throughput Screen. 8: 117-126 https://doi.org/10.2174/1386207053258532
  3. Ryu, H.-J., D. Kim, E.-S. Seo, H.-K. Kang, J.-H. Lee, S.-H. Yoon, J.-Y. Cho, J. F. Robyt, D.-W. Kim, S.-S. Chang, S.-H. Kim, and A. Kimura. 2004. Identification of amino-acids residues for key role in dextransucrase activity of Leuconostoc mesenteroides B-742CB. J. Microbiol. Biotechnol. 14: 1075-1080
  4. Kim, I.-G., M.-S. Lee, T.-E. Jin, B.-K. Hwang, J.-H. Lee, S.-C. Suh, and S.-L. Rhim. 2004. Inhibitory effect of bacteriophage EPS-depolymerase on growth of asian pear blight pathogen Erwinia pyrifoliae. J. Microbiol. Biotechnol. 14: 872-876
  5. Kim, M., C. Shin, H. Yang, S. Kim, H. Lim, C.-H. Lee, M. Kim, and Y. Lim. 2004. Naltriben analogues as peptide anticancer drugs. J. Microbiol. Biotechnol. 14: 881-884
  6. Larocca, D. and A. Baird, 1999. Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J. 13: 727-734 https://doi.org/10.1096/fasebj.13.6.727
  7. Lee, S. C. and M.-H. Yu. 2004. Evidence of interaction of phage P22 tailspike protein with DnaJ during translational folding. J. Microbiol. Biotechnol. 14: 162-166
  8. Lee, S.-W., C. Mao, C. E. Flynn, and A. M. Belcher. 2002. Ordering of quantum dots using genetically engineered viruses. Science 296: 892-895 https://doi.org/10.1126/science.1068054
  9. Mao, C., C. E. Flynn, A. Hayhurst, R. Sweeney, J. Qi, and A. M. Belcher. 2003. Viral assembly of oriented quantum dot nanowire. Proc. Natl. Acad. Sci. USA 100: 6946-6951
  10. Mao, C., C. E. Flynn, D. J. Soils, B. D. Reiss, S. T. Kottmann, R. Y. Sweeney, A. Hayhurst, G. Georglou, B. Invension, and A. M. Belcher. 2004. Virus-based toolkit for directed synthesis of magnetic and semi-conducting nanowires. Science 303: 213-217 https://doi.org/10.1126/science.1092740
  11. Morrison, K. L. and G. A. Weiss. 2001. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5: 302-307 https://doi.org/10.1016/S1367-5931(00)00206-4
  12. Pini, A., A. Giuliani, C. Ricci, Y. Runci, and L. Bracci. 2004. Strategies for the construction and use of peptide and antibody libraries displayed on phages. Curr. Protein Pept. Sci. 5: 487-496 https://doi.org/10.2174/1389203043379323
  13. Rhyner, C., R. Kodzius, and R. Crameri. 2002. Direct selection of cDNAs from filamentous phage surface display libraries: Potential and limitations. Curr. Pharm. Biotechnol. 3: 13-21 https://doi.org/10.2174/1389201023378535
  14. Roth, T. A., G. A. Weiss, C. Eigenbrot, and S. S. Sidhu. 2002. A minimized M13 coat protein defines the minimum requirements for assembly into the bacteriophage particle. J. Mol. Biol. 322: 357-367 https://doi.org/10.1016/S0022-2836(02)00769-6
  15. Rowley, M. J., K. O'Connor, and L. Wijeyewickrema. 2004. Phage display for epitope determination: A paradigm for identifying receptor-ligand interactions. Biotechnol. Annu. Rev. 10: 151-188 https://doi.org/10.1016/S1387-2656(04)10006-9
  16. Sidhu, S. S. and S. Sachdev. 2001. Engineering M13 for phage display. J. Mol. Biol. 18: 57-63
  17. Sidhu, S. S., W. J. Fairbrother, and K. Deshayes. 2003. Exploring protein-protein interactions with phage display. Chembiochem 4: 14-25 https://doi.org/10.1002/cbic.200390008
  18. Weiss, G. A. and S. S. Sidhu. 2000. Design and evolution of artificial M13 coat proteins. J. Mol. Biol. 300: 213-219 https://doi.org/10.1006/jmbi.2000.3845
  19. Weiss, G. A., C. K. Watanabe, A. Zhong, A. Goddard, and S. S. Sidhu. 2000. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. USA 97: 8950-8954