Antifungal Activity of Bacillus sp. KMU-1011 Against Gray Mold Causing Botrytis cinerea

잿빛 곰팡이병원균 Botrytis cinerea에 대한 Bacillus sp. KMU-1011의 항진균활성

  • Published : 2006.03.01

Abstract

We isolated a bacterium which produces antifungal substances from the Lake of Saimaa soils in Fin-land. The isolated strain was identified as Bacillus sp. and shown a strong antifungal activity on plant pathogenic fungi. Bacillus sp. KMU-1011 produced maximum level of antifungal substances under incubation aerobically at $24^{\circ}C$ for 48 hours in nutrient broth containing 1.0% glucose and 1.0% polypeptone at 180 rpm and initiated pH adjusted to 6.0. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against Botrytis cinerea KACC 40573 by dry cell weight. Chloroform extract of cultured broth also shown fungal growth inhibitory activity against C. gloeosporioides KACC 40804, D. bryoniae KACC 40669, F. oxysporum KACC 40037, F. oxysporum KACC 40052, F. oxysporum f. sp. radicis-lycopersici KACC 40537, F. oxysporum KACC 40902, M. cannonballus KACC 40940, P. cambivora KACC 40160, R. solani AG-1 KACC 40101, R. solani AG-4 KACC 40142, and S. scleotiorum KACC by agar diffusion method.

핀란드의 Lappeenranta 지역에 위치하는 Saimaa 호수가의 토양시료로부터 분리된 Bacillus sp. KMU-1011를 이용하여 많은 작물에 잿빛 곰팡이병을 유발하는 Botrytis cinerea KACC 40573에 대한 항진균 활성을 위한 배양조건을 조사하였다. 항진균 물질의 생산을 위한 기본배지로 nutrient broth를 사용하였으며 탄소원으로 1.0% glucose와 질소원으로 1.0% polypeptone를 첨가하였을 때 가장 높은 항진균 활성을 나타내었다. 배양조건으로는 $24^{\circ}C$, 180 rpm, 48시간 배양하였을 때 가장 높은 항진균 활성을 나타내었다. Ammonium sulfate를 $30{\sim}60%$ 첨가하여 항진균 물질을 회수하였을 때 가장 양호한 항진균 활성을 나타내었으며, chloroform을 이용하여 배양액 중에 존재하는 항진균 물질을 회수하여 다양한 작물병원성 곰팡이에 대한 spectrum을 조사한 결과, 잿빛곰팡이병, 고추 탄저병, 참외 탄저병, 수박등의 박과작물의 덩굴마름병, 토마토 시들음병, 글라디올러스 마른썩음병, 토마토 질병, 수박 덩굴쪼김병. 수박 질병, 사과나무 역병, 벼 잎집무늬마름병, 참외 줄기썩음병, 그리고 고추 균핵병에 대하여 양호한 항진균 활성을 나타내는 것으로 조사되었다.

Keywords

References

  1. Nobre, S. A. M., A. M. Luiz, S. G. M. Eduardo, V. C. Luciano, and S. D. Paula. 2005. Selection of Clonostachys rosea isolates from brazilian ecosystems effective in controlling in Botrytis cinerea. Biol. Control. 34: 132-143 https://doi.org/10.1016/j.biocontrol.2005.04.011
  2. Santos, A., A. Sanchez, and D. Marquina. 2004. Yeasts as biological agents to control Botrytis cinerea. Microbiol. Res. 159: 331-338 https://doi.org/10.1016/j.micres.2004.07.001
  3. Raposo, R., V. Gomez, T. Urrutia, and P. Melgarejo. 2001. Survival of Botrytis cinerea in southeastern spanish greenhouses. Eur. J. Plant Pathol. 107: 229-236 https://doi.org/10.1023/A:1011250200724
  4. Sutton, J. C. 1994. Biological control of strawberry diseases. Adv. Straw. Res. 13: 1-12
  5. Lee, K. S. 1997. Evaluation on the effects of pesticide residues to agroecosystem in Korea. Kor. J. Environ. Agric. 16: 80-93
  6. Oh, Y. K. and J. H. Kim. 1997. Effects of residual organochlorine pesticides in the coastal environment on the Cheju Island. J. KSWQ. 13: 317-324
  7. Kim, S. H., Y. D. Lee, W. S. Ha, and H. M. Ro. 1998. A sttidy on the transport phenomena of hydrophobic pesticides influenced by the interfaces of groundwater in unsaturated inorganic porous media. Environ. Eng. Res. 20: 1545-1553
  8. Park, R. D., K. J. Jo, Y. Y. Jo, Y. L. Jin, K. Y. Kim, J. H. Shim, and Y. W. Kim. 2002. Variation of antifungal activities of chitosans on plant pathogens. J. Microbiol. Biotechnol. 12: 84-88
  9. Park, S. M., H. J. Jung, S. H. Han, S. H. Yeo, Y. W. Kim, H. G. Ahn, H. S. Kim, and T. S. Yu. 2005. Antifungal activity of extract from Xanthium Strumarium L. against plant pathogenous Fungi. J. Life Sci. 15: 692-695 https://doi.org/10.5352/JLS.2005.15.5.692
  10. Jeon, Y. H., S. P. Chang, I. Hwang, and Y. H. Kim. 2003. Involvement of growth-promoting rhizobacteritun Paenibacillus polymyxa in root of stored korean ginseng. J. Microbiol. Biotechnol. 13: 881-89l
  11. An, K. N., W. J. Jung, D. H. Chae, R. D. Park, T. H. Kim, Y. W. Kim, Y. C. Kim, G. S. Cha, and K. Y. Kim. 2003. Biocontro1 of Rhizoctonia solani damping-off of cucumber by Bacillus cereus KJA-118. Kor. J. Soil Sci. Fert. 36: 247-255
  12. Kim, J. Y., E. A. Bae, M. J. H, and D. H. Kim. 1999. Inhibitory activity of Bacillus licheniformis AJ on the growth of diarrheal pathogens. J. Appl. Pharm. 7: 385-389
  13. Park, S. M., S. H. Han, and T. S. Yu. 2005. Culture conditions and antifungal activity of Bacillus licheniformis KMU-3 against crop pathogenic fungi. Kor. J. Microbiol. Biotechnol. 33: 112-116
  14. Chang, J. Y., H. H. Lee, J. C. Kim, and H. C. Chang. 2001. Characterization of a bacteriocin produced by Bacillus licheniformis cy2. J. Kor. Soc. Food Sci. Nutr. 30: 410-414
  15. Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Microbiol. Biotechnol. 28: 334-340
  16. Oh, Y. J. 1992. Studies on the optimization of media composition and cultural conditions for kasugamycin production by Streptomyces kasugansis. Kor. J. Microbiol. Biotechnol. 20: 583-587
  17. Bae, M. 1978. Present status and future of antibiotics for agriculture. Kor. J. Microbiol. Biotechnol. 20: 141-148
  18. Holt, J. G, N. R. Krirg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Systematic Bacteriology, 9th, Williams & Wilkins, U.S.A
  19. Jung, H. K. and S. D. Kim. 2003. Purification and characterization of an antifungal antibiotic from Bacillus megaterim KL 39, a biocontrol agent of red-paper phytophthora blight disease. Kor. J. Mircobiol. Biotechnol. 31: 235-241