Encapsulation of Bacillus polyfermenticus SCD with Alginate-Methylcellulose and Evaluation of Survival in Artificial Conditions of Large Intestine

  • Kim Cheon-Jei (Division of Animal Life Science, Konkuk University) ;
  • Jun Song-Ae (Division of Animal Life Science, Konkuk University) ;
  • Lee Na-Kyoung (Division of Animal Life Science, Konkuk University) ;
  • Kim Kee-Tae (Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Kim Chang-Han (Division of Animal Life Science, Konkuk University) ;
  • Paik Hyun-Dong (Division of Animal Life Science, Konkuk University)
  • Published : 2006.03.01

Abstract

Bacillus polyfermenticus SCD was studied for its increasing stability by encapsulation, using 2, 3, and 4% sodium alginate. In these cases, 3% alginate resulted in the maximum survival of B. polyfermenticus SCD in artificial gastric juice for 3 h. Effects of several biopolymers on the encapsulated B. polyfermenticus SCD by 3% sodium alginate were investigated. Encapsulation with 0.5% methylcellulose showed the highest survival rate for 3 h in artificial gastric juice. Therefore, the optimized encapsulation material was 3% alginate with 0.5% methylcellulose. Furthermore, the survival of encapsulated B. polyfermenticus SCD was shown to be 122%, when 1% bile salt was added. Freeze-dried encapsulation resulted in lower survival than with non-dried encapsulation. Therefore, encapsulation was the most effective when 3% sodium alginate was used with 0.5% methylcellulose, but without freeze-drying.

Keywords

References

  1. Adhikarl, K., A. Mustapha, I.-U. Grun, and L. Fernando. 2000. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946-1951 https://doi.org/10.3168/jds.S0022-0302(00)75070-3
  2. Audet, P. and C. Lacroix. 1989. Two-phase dispersion process for the production of biopolymer gel capsules: Effect of various parameters on capsule size and their distribution. Process Biochem. 12: 217-226
  3. Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Meth. 56: 27-35 https://doi.org/10.1016/j.mimet.2003.09.002
  4. Chandy, T., D. L. Mooradian, and G. H. R. Rao. 1999. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell capsule. Int. Soc. Artif. Organs 23: 894-903 https://doi.org/10.1046/j.1525-1594.1999.06244.x
  5. Cui, J.-H., J.-S. Goh, P.-H. Kim, S.-H. Choi, and B.-J. Lee. 2000. Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int. J. Pharm. 210: 51-59 https://doi.org/10.1016/S0378-5173(00)00560-3
  6. Jeon, H.-R., D.-W. Park, Y.-J. Lee, S.-H. Kwon, and Y.-W. Choi. 2000. Microcapsules for stabilization of lactic acid bacteria. J. Kor. Pharm. Sci. 30: 47-50
  7. Jun, K.-D., H.-J. Kim, K.-H. Lee, H.-D. Paik, and J.-S. Kang. 2002. Characterization of Bacillus polyfermenticus SCD as a probiotic. Kor. J. Microbiol. Biotechnol. 30: 359-366
  8. Kim, I. H., M. S. Park, and G. E. Ji. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte-like Caco-2 cells. J. Microbiol. Biotechnol. 13: 276-281 https://doi.org/10.1159/000075843
  9. Kim, S.-M., K.-H. Lee, N.-K. Lee, C.-J. Kim, C.-H. Kim, and H.-D. Paik. 2004. Antagonistic activity of polyfermenticin SCD against Helicobacter pylori KCTC 2948. J. Microbiol. Biotechnol. 14: 148-152
  10. Kim, W.-J., S.-S. Hong, and S.-K. Cha. 1994. Selection of human-originated Lactobacillus acidophilus for production of probiotics. J. Microbiol. Biotechnol. 4: 151-154
  11. Koo, S.-M., Y.-H. Cho, C.-S. Huh, Y.-J. Baek, and J.-Y. Park. 2001. Improvement of the stability of Lactobacillus casei YIT 9018 by microcapsule using alginate and chitosan. J. Microbiol. Biotechnol. 11: 376-383
  12. Lee, B.-J. and G.-H. Min. 1995. Preparation and release characteristics of polymer-reinforced and coated alginate capsules. Arch. Pharm. Res. 18: 183-188 https://doi.org/10.1007/BF02979193
  13. Lee, J.-H., D.-H. Lee, J.-H. Jeong, J.-K. Park, and S.-K. Kim. 2005. Optimization of chitosan-alginate encapsulation process using pig hepatocytes for development of bioartificial liver. J. Microbiol. Biotechnol. 15: 7-13
  14. Lee, J.-O., K.-D. Jun, J.-S. Kang, and J.-H. Lee. 2004. Increased stability of Bacillus polyfermenticus SCD in low pH, high temperature and high glucose concentration via three-layer coating. Kor. J. Biotechnol. Bioeng. 19: 221-225
  15. Lee, K.-Y., C.-J. Woo, K.-S. Bae, and T.-R. Heo. 2000. Development of the selection technique of entrapment materials for the viability improvement of entrapped bifidobacteria. Kor. J. Biotechnol. Bioeng. 15: 1-8
  16. Lee, K.-Y. and T.-R. Heo. 2000. Survival of Bifidobacterium logum immobilized in calcium alginate capsules in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66: 869-873 https://doi.org/10.1128/AEM.66.2.869-873.2000
  17. Paolo, G., R. Fernando, V. Alessandro, and C. Massimo. 2000. Probiotics in infective diarrhea and inflammatory bowel diseases. J. Gastroenterol. Hepatol. 15: 489-493 https://doi.org/10.1046/j.1440-1746.2000.02162.x
  18. Park, E., K.-T. Kim, C.-J. Kim, C.-H. Kim, and H.-D. Paik. 2004. Anticarcinogenic and antigenotoxic effects of Bacillus polyfermenticus. J. Microbiol. Biotechnol. 14: 852-858
  19. Park, H.-S., S.-H. Lee, and T.-B. Uhm. 1998. Selection of microorganisms for probiotics and their characterization. J. Kor. Soc. Food Sci. Nutr. 27: 433-440
  20. Rao, A. V., N. Shiwnarain, and I. Maharaj. 1989. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric acid and intestinal juices. Can. Inst. Food Sci. Tech. J. 22: 345-349 https://doi.org/10.1016/S0315-5463(89)70426-0
  21. Ribeiro, A. J., R. J. Neufeld, P. Arnaud, and J. C. Chaumeil. 1999. Microcapsule of lipophilic drugs in chitosan-coated alginate microspheres. Int. J. Pharm. 187: 115-123 https://doi.org/10.1016/S0378-5173(99)00173-8
  22. Sheu, T. Y. and R. T. Marshall. 1993. Microentrapment of lactobacilli in calcium alginate gels. J. Food Sci. 54: 557-561
  23. Singh, Y. 2003. Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J. Microbiol. Biotechnol. 13: 687-691
  24. Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy. 2000. Capsule of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47-55 https://doi.org/10.1016/S0168-1605(00)00380-9
  25. Takeuchi, H., T. Yasuji, H. Yamamoto, and Y. Kawashima. 2000. Spray-dried lactose composite particles containing an ion complex of alginate-chitosan for designing a dry-coated tablet having a time-controlled releasing function. Pharm. Res. 17: 94-99 https://doi.org/10.1023/A:1007530927887
  26. Turker, N. and H. Hamamci. 1998. Storage behavior of immobilized dried microorganisms. Food Microbiol. 15: 3-11 https://doi.org/10.1006/fmic.1997.0140
  27. Wan, J., J. B. Gordon, K. Muirhead, M. W. Hickey, and M. J. Coventry. 1997. Incorporation of nisin in micro-particles of calcium alginate. Lett. Appl. Microbiol. 24: 153-158 https://doi.org/10.1046/j.1472-765X.1997.00294.x
  28. Woo, C.-J., K.-Y. Lee, and T.-R. Heo. 1999. Improvement of Bifidobacterium longum stability using cell-entrapment technique. J. Microbiol. Biotechnol. 9: 132-139 https://doi.org/10.1159/000030692
  29. Yang, J.-H. and J.-P. Lim. 1998. Antibacterial effect of calcium alginate microcapsule containing chitosan. J. Kor. Pharm. Sci. 28: 151-158
  30. Zhon, Y., E. Martins, A. Groboillot, C.-P. Champagne, and R.-J. Neufeld. 1998. Spectrophotometric quantification of lactic acid bacteria in alginate and control of cell release with chitosan coating. J. Appl. Microbiol. 84: 342-348 https://doi.org/10.1046/j.1365-2672.1998.00348.x