Parasitism of Cotesia plutellae Alters Morphological and Biochemical Characters of Diamondback Moth, Plutella xylostella

  • Kim, Yong-Gyun (School of Bioresource Sciences, Andong National University) ;
  • Son, Yerim (School of Bioresource Sciences, Andong National University)
  • Published : 2006.03.01

Abstract

A solitary endoparsitoid, Cotesia plutellae, has been regarded as a major biological regulator to manipulate field population of diamondback moth (DBM), Plutella xylostella. It parasitizes DBM and alters its physiology into a favorable condition for the parasitoid development. This research has been focused on the physiological changes in terms of internal morphology and biochemical changes of the parasitized DBM. The parasitized DBM exhibited significantly hypotrophied structures in Malpighian tubules, fat body, and testes, while it did not show apparent change in the digestive organ structure. The parasitoid represented almost 70% of total body weight of the parasitized DBM. This estimate was well corresponded to the measurements of the major nutrient amounts in the parasitized DBM. This study clearly indicates that the major nutrients obtained by the parasitoid DBM are exploited by the koinobiont parasitoid for its own development.

Keywords

References

  1. Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138: 39-44 https://doi.org/10.1016/j.cbpb.2004.02.018
  2. Basio, N.A. and Y. Kim. 2005. A short review of teratocytes and their characters in Cotesia plutellae (Bracovirus: Hymenoptera). J. Asia-Pacific Entomol. 8: 211-217 https://doi.org/10.1016/S1226-8615(08)60093-X
  3. Beckage, N.E. and D.B. Gelman. 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies of pest control. Annu. Rev. Entomol. 49: 299-330 https://doi.org/10.1146/annurev.ento.49.061802.123324
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-314 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Kawaguchi, M. and T. Tanaka. 1999. Biological characteristics of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae): host stage preference, subsequent sex ratio of progeny and mate location of males. Appl. Entomol. Zool. 34: 213-221 https://doi.org/10.1303/aez.34.213
  6. Kim, Y. 2005. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch. Insect Biochem. Physiol. 59: 230-244 https://doi.org/10.1002/arch.20074
  7. Kim, Y. and J. Kim. 2004. Inhibitory effect of Cotesia plutellae bracovirus (CpBV) on development of a non-natural host, Spodoptera exigua. Korean J. Appl. Entomol. 43: 217-223
  8. Krell, P.J., M.D. Summers and S.D. Vinson. 1982. A virus with a multipartite superhelical DNA genome from the ichneumonid parasitoid, Campoletis sonorensis. J. Virol. 43: 859-870
  9. Lee, S. and Y. Kim. 2004. Juvenile hormone esterase of diamondback moth, Plutella xylostella, and parasitism of Cotesia plutellae. J. Asia-Pacific Entomol. 7: 283-287 https://doi.org/10.1016/S1226-8615(08)60228-9
  10. Mackauer, M. and R. Sequeira. 1993. Patterns of development in insect parasites. pp. 1-23, in Parasites and pathogens of insects. Vol. 1. Eds. N.E. Beckage, S.N. Thompson and B.A. Federici. Academic Press, New York
  11. Reed, D.A. and JJ. Brown. 1998. Host/parasitoid interactions: critical timing of parasitoid-derived products. J. Insect Physiol. 44: 721-732 https://doi.org/10.1016/S0022-1910(98)00005-5
  12. SAS Institute, Inc. 1989. SAS/STAT^{\circledR}$ user's guide, version 6.4. SAS Institute, Inc., Cary, NC
  13. Shelby, K.S. and B.A. Webb. 1997. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem. Mol. Biol. 27: 263-270 https://doi.org/10.1016/S0965-1748(96)00095-1
  14. Strand, M.R. and L.L. Pech. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 40: 31-56 https://doi.org/10.1146/annurev.en.40.010195.000335
  15. Thompson, S.N. 1993. Redirection of host metabolism and effects on parasites nutrition, pp. 125-144, in Parasites and pathogens of insects, Vol. 1. Eds. N.E. Beckage, S.N. Thompson and B.A. Federici. Academic Press, San Diego, CA
  16. Thompson, S.N. and D.L. Dahlman. 1998. Aberrant nutritional regulation of carbohydrate synthesis by parasitized Manduca sexta L. J. Insect Physiol. 44: 745-753 https://doi.org/10.1016/S0022-1910(98)00007-9
  17. Van Handel, E. 1985a. Rapid determination of glycogen and sugars in mosquitoes. J. Am. Mosq. Control Assoc. 1: 299-301
  18. Van Handel, E. 1985b. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1: 302-304
  19. Webb, B.A. 1998. Polydnavirus biology, genome structure, and evolution, pp. 105-139, in The insect viruses. Eds. L.K. Miller and L.A. Balls. Plenum, New York
  20. Webb, B.A. and M.R. Strand. 2005. The biology and genomics of polydnaviruses. pp. 323-360, in Comprehensive molecular insect science. Vol. 6. Eds. L.I. Gilbert, K. Iatrou and S.S. Gill. Elsevier. Oxford. UK
  21. Wheeler, D.E., I. Tuchinskaya, N.A. Buck and B.E. Tabashnik. 2000. Hexameric storage proteins during metamorphosis and egg production in the diamondback moth, Plutella xylostella (Lepidoptera). J. Insect Physiol. 46: 951-958 https://doi.org/10.1016/S0022-1910(99)00202-4
  22. Whitfield, J.B. 2000. Phylogeny of microgastroid braconid wasps, and what it tells us about polydnavirus evolution. pp. 97-105, in The Hymenoptera: evolution biodiversity and biological control. Eds. A.D. Austin and M. Dowton. CSIRO Publishing, Melbourne, Australia
  23. Yagi, S. and T. Tanaka. 1992. Retardation of testis development in the armyworm, Pseudaletia separata, parasitized by the braconid wasp, Cotesia kariyai. Invertebr. Rep. Devel. 22: 151-157 https://doi.org/10.1080/07924259.1992.9672267