DOI QR코드

DOI QR Code

Cytotoxic Activities of Green and Brown Seaweeds Collected from Jeju Island against Four Tumor Cell Lines

  • Kim, Kil-Nam (Faculty of Applied Marine Science, Cheju National University) ;
  • Lee, Ki-Wan (Faculty of Applied Marine Science, Cheju National University) ;
  • Song, Choon-Bok (Faculty of Applied Marine Science, Cheju National University) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2006.03.01

Abstract

Methanolic and aqueous extracts from 37 seaweed species (10 green and 27 brown seaweeds) collected from Jeju Island coast were prepared at high ($70^{\circ}C$) and room ($20^{\circ}C$) temperatures and examined for cytotoxic activity against 4 tumor cell lines: U937 (human monoblastoid leukemia cell line), HL60 (human promyelocytic leukemia cell line), HeLa (woman cervical carcinoma cell line) and CT26 (mouse colon carcinoma line). Both MeOH extracts of Desmarestia tabacoides and Dictyota dichotoma possessed strong cytotoxic activities against all the tumor cell lines tested, but the aqueous extract exhibited no activity. On the other hand Ecklonia cava showed strong cytotoxic activities for the $20^{\circ}C$ aqueous extract against the three tumor cells except HeLa cell. Sagassum coreanum and Sagassum siliquastrum $20^{\circ}C$ aqueous extracts also exhibited strong cytotoxic activities against U937, HL60, HeLa cells. Even though green seaweeds showed less activity than brown seaweeds, $20^{\circ}C$ aqueous extracts of Codium contractum and Codium fragile exhibited strong cytotoxic activities against HL60 or CT26 cells, respectively.

Keywords

References

  1. Kufe DW, Pollock RE, Weichselbaum RR, Bast Jr RC, Gansier TS, Holland JF. 2003. Cancer medicine. 6th ed.  American Cancer Society Inc. and B.C. Decker, Inc., Hamiton, Ontario
  2. Lowe SW, Lin AW. 2000. Apoptosis in cancer. Carcinogenesis 21: 485-495 https://doi.org/10.1093/carcin/21.3.485
  3. Yang LL, Lee CY, Yen KY. 2000. Induction of apoptosis by hydrolysable tannins from Eugenia jambos L. on human leukemia cells. Cancer Lett 157: 65-75 https://doi.org/10.1016/S0304-3835(00)00477-8
  4. Kashiwagi M, Mynderse JS, Moore RE, Norton TR. 1980. Antineoplastic evaluation of pacific basin marine algae. J Pharm Sci 69: 735-738 https://doi.org/10.1002/jps.2600690636
  5. Gonzalez AG, Darias V, Estevez E. 1982. Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae. Planta Med 44: 44-46 https://doi.org/10.1055/s-2007-971399
  6. Kosovel V, Avanzini A, Scarcia V, Furlani A. 1988. Algae as possible sources of antitumoral agents. Preliminary eval-uation of the in vitro cytostatic activity of crude extracts. Pharmacol Res Commun 20: 27-31
  7. Glombitza KW, Koch M. 1989. Secondary metabolites of pharmaceutical potential. In Algal and Cyanobacterial Bio-technology. Cresswell RC, Rees TA, Shah N, eds. Longman Scientific & Technical, Harlow, UK. p 161-238
  8. Yamamoto I, Takahashi M, Tamura E, Maruyama M. 1982. Antitumor activity of crude extracts from edible marine algae against L-1219 leukemia. Bot Mar 25: 455-457 https://doi.org/10.1515/botm.1982.25.9.455
  9. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. 1989. Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 55: 1265-1271 https://doi.org/10.2331/suisan.55.1265
  10. Jolles B, Remington M, Andrews PS. 1963. Effects of sulphated degraded laminarin on experimental tumor growth. Br J Cancer 17: 109-115 https://doi.org/10.1038/bjc.1963.16
  11. Yamamoto I, Nagumo T, Yagi K, Tominaga H, Aoki M. 1974. Antitumor effect of seaweeds. Jpn J Exp Med 44: 543-546
  12. Mizukoshi S, Matsuoka S, Nakamura K, Katou H, Noda H. 1992. Search for bioactive substances from marine algae. Bull Faculty Biosources Mie Univ 8: 27-34
  13. Siriwardhana N, Lee KW, Kim SH, Ha JW, Jeon YJ. 2003. Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhi-bition. Food Sci Tech Int 9: 339-346 https://doi.org/10.1177/1082013203039014
  14. Hiroishi S, Sugie K, Yoshida T, morimoto J, Taniguchi Y, Imai S, Kurebayashi J. 2001. Antitumor effects of Marginisporum crassissimum (Rhodophycere), a marine red alga. Cancer Latt 167: 145-150 https://doi.org/10.1016/S0304-3835(01)00460-8
  15. Siddhanta AK, Shanmugam M, Mody KH, Goswami AM, Ramavat BK. 1999. Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: Chemical composition and blood anticoagulant activity. Int J Biol Macromol 26: 151-154 https://doi.org/10.1016/S0141-8130(99)00079-3
  16. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. 2003. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62: 1221-1224 https://doi.org/10.1016/S0031-9422(03)00004-9
  17. Abourriche A, Charrouf M, Berrada M, Bennamara A, Chaib N, Francisco C. 1999. Antimicrobial activities and cytotoxicity of the brown alga Cystoseira tamariscifolia. Fitoterapia 70: 611-614 https://doi.org/10.1016/S0367-326X(99)00088-X
  18. Okai Y, Okai KH. 1997. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int J Immunopharmacol 19: 355-358 https://doi.org/10.1016/S0192-0561(97)00070-2
  19. Van Alstyne KL, Whitman SL, Ehlig JM. 2001. Dif-ferences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae. Mar Biol 139: 201-210 https://doi.org/10.1007/s002270000507
  20. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. 1992. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1. Anticancer Res 12: 1471-1474
  21. Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T. 1990. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett 55: 75-81 https://doi.org/10.1016/0304-3835(90)90068-9
  22. Nishino H, Tsushima M, Matsuno T, Tanaka Y, Okuzumi J, Murakoshi M, Satomi Y, Takayasu J, Tokuda H, Nishino A, Iwashima A. 1992. Anti-neoplastic effect of halocynthiaxanthin a metabolite of fucoxanthin. Anticancer Drugs 3: 493-497 https://doi.org/10.1097/00001813-199210000-00008
  23. Hosokawa M, Wanezaki S, Miyauchi K, Kurihara H, Kohno H, Kawabata J, Odashima S, Takahashi K. 1999. Apoptosis-inducing effect of fucoxanthin on human leukemia cell HL-60. Food Sci Technol Res 5: 243-246 https://doi.org/10.3136/fstr.5.243
  24. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A. 2001. Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131: 3303-3306
  25. Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M. 1985. Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on ${\alpha}_2$-macroglobulin from the brown alga Ecklonia kurome OKAMURA. Chem Lett 6: 739-742
  26. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M. 1989. Structure of an antiplasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull 37: 349-353 https://doi.org/10.1248/cpb.37.349
  27. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. 1989. Anti-plasmin Inhibitor. V. Structure of novel dimeric eckols isolated from the brown alga Ecklonia kurome OKAMURA. Chem Pharm Bull 37: 2438-2440 https://doi.org/10.1248/cpb.37.2438
  28. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. 1990. Anti-plasmin Inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome OKAMURA. Chem Pharm Bull 38: 133-135 https://doi.org/10.1248/cpb.38.133
  29. Nakayama Y, Takahashi M, Fukuyama Y, Kinzyo Z. 1989. An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA. Agric Biol Chem 63: 3025-3030
  30. Nakamura T, Nagayama K, Uchida K, Tanaka R. 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci 62: 923-926 https://doi.org/10.2331/fishsci.62.923
  31. Altena A, Steinberg D. 1992. Are differences in the responses between North American and Australian marine herbivores to phlorotannins due to differences in phlorotannin structure. Biochem Syst Ecol 20: 493-499 https://doi.org/10.1016/0305-1978(92)90003-V
  32. Hay ME, Fenical W. 1988. Marine plant-herbivore interactions: the ecology of chemical defence. Annu Rev Ecol Syst 19: 111-145 https://doi.org/10.1146/annurev.es.19.110188.000551
  33. Boettcher A, Targett M. 1993. Role of polyphenolic molec-ular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74: 891-903 https://doi.org/10.2307/1940814
  34. Targett M, Boettcher A, Targett E, Vrolijk H. 1995. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103: 170-179 https://doi.org/10.1007/BF00329077
  35. Steinberg PD. 1992. Geographical variation in the inter-action between marine herbivores and brown algal sec-ondary metabolites. In Ecological Roles of Marine Natural Prodacts. Paul VJ, ed. Cornell Univ. Press, Ithaca, NY. p 51-92
  36. Jennings JG, Steinberg PD. 1997. Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109: 461-473 https://doi.org/10.1007/s004420050106
  37. Okai Y, Higashi-Okai K, Yano Y, Otani S. 1996. Iden-tification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett 100: 235-240 https://doi.org/10.1016/0304-3835(95)04101-X
  38. Cho EJ, Rhee SH, Park KY. 1997. Antimutagenic and cancer cell growth inhibitory effects of seaweeds. J Food Sci Nutr 2: 348-353

Cited by

  1. Immunomodulatory Effects of an Enzymatic Extract from Ecklonia cava on Murine Splenocytes vol.10, pp.3, 2008, https://doi.org/10.1007/s10126-007-9062-9
  2. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line vol.21, pp.3, 2009, https://doi.org/10.1007/s10811-008-9368-7
  3. Effects of dietary supplementation with citrus pomace and Ecklonia cava residue on the physiological changes and growth of disk abalone, Haliotis discus discus vol.28, pp.1, 2015, https://doi.org/10.7847/jfp.2015.28.1.053
  4. Biological Potential of Enzymatic and Polyphenol Extracts from Ecklonia cava vol.39, pp.1, 2013, https://doi.org/10.15230/SCSK.2013.39.1.019
  5. Phenolic Content, DPPH Radical Scavenging, and Tyrosinase Inhibitory Activities of Ecklonia cava Extracted with the Ultrasonic Wave Method vol.23, pp.7, 2013, https://doi.org/10.5352/JLS.2013.23.7.913
  6. Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells vol.43, pp.2, 2018, https://doi.org/10.11620/IJOB.2018.43.2.061
  7. Leathesia difformis Extract Inhibits α-MSH-Induced Melanogenesis in B16F10 Cells via Down-Regulation of CREB Signaling Pathway vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030536
  8. Cytotoxic Activities of Red Algae Collected from Jeju Island Against Four Tumor Cell Lines vol.11, pp.3, 2006, https://doi.org/10.3746/jfn.2006.11.3.177
  9. 감태(Ecklonia cava) 줄기 및 잎의 효소적 추출물과 메탄올 추출물에 의한 항산화 활성비교 vol.35, pp.9, 2006, https://doi.org/10.3746/jkfn.2006.35.9.1139
  10. Prospecting the Effects on Abalone (H. discus) Growth under Low-Salinity Stress after Feeding Citrus Peel (CP) and Ecklonia cava disuse (ECD) as Feed Additives vol.9, pp.7, 2006, https://doi.org/10.3390/jmse9070707