Nitrogen and Phosphorus Uptake and Growth Kinetics of Microcystis aeruginosa Cultured under Chemostats

연속배양에서 Microcystis aeruginosa의 질소 인 흡수와 생장 특성

  • Lee, Ok-Hee (Environmental Research Center for Nakdong River, Inje University) ;
  • Cho, Kyung-Je (School of Environmental Science and Engineering, Inje University)
  • 이옥희 (인제대학교 낙동강환경연구센터) ;
  • 조경제 (인제대학교 환경공학부)
  • Published : 2006.03.31

Abstract

As unialgal cultures to examine the growth kinetics of an algal species, Microcystis aeruginosa was grown in chemostats with nitrogen and phosphorus limitation. The nutrient concentrations of $NH_4\;^+\;and\;PO_4\;^{3-}$ to limit the growth of M, aeruginosa were approximately 200 ${\mu}M$ and 7 ${\mu}M$, respectively. Cell size of the algae decreased towards the $NH_4$-nitrogen limitation under a constant dilution rate, while it increased in the $PO_4$-limitaion. The cell quota of nitrogen under nitrogen-limited conditions was 6.1 ${\mu}mol$ mg $C^{-1}$ and, under nitrogen sufficient conditions, ranged from 9.5 ${\mu}mol$ mg $C^{-1}$ to 12.4 ${\mu}mol$ mg $C^{-1}$. In addition to the cell quota, the half-saturation constants for nitrogen uptake ($K_s$) and the growth rate (${\mu}_m$) was 36 ${\sim}$ 61 ${\mu}M$ and 0.28 ${\sim}$ 0.35 ${\mu}mol$ cell ${\cdot}$ $hr^{-1}$ to show high values in comparison with other algal species. As the limiting concentration, cell quota and uptake rate of M. aeruginosa were higher than those of any other species, the its nitrogen requirement would be great. In the other side, as the half saturation constant ($K_s$) for nitrogen uptake was higher, and the ratios ofmaximum uptake rate ($V_m$) and $K_s$ was relatively low, the species would have the low competitive ability in the low nitrogen concentration in the ambient water. However, the low concentration of nitrogen in the Nakdong River during the Microcystis outbreak would be the inevitable results of the algal blooms. In the lower Parts of the Nakdong River, the nutrient status was coupled with the growth kinetics of the blooming algae to have clear seasonal variations through a year.

연속배양의 평형 정상상태 조건에서 담수조류 Microcystis aeruginosa의 최대생장률 (${\mu}_m$)과 세포내 영양염의농도(Q)의 관계, 질소 결핍 상태에서 액체배지에서 영양염 농도(S)와 홉수율(V)의 관계를 각각 조사하였다. 질소제한조건에서 M. aeruginosa의 세포 당 $Q_{0N}$은 0.04 pmol $cell^{-1}$. ${\mu}_m$은 1.1 $day^{-1}$였고, 제한조건에서 최저값 $Q_{0N}$과 충분조건에서 $Q_N$을 탄소기준하여 각각 6.1 ${\mu}mol$ mg $C^{-1}$ 및 9.5${\sim}$12.4 ${\mu}mol$ mg $C^{-1}$였다. 다른 미세조류와 비교f'1면 세포의 질소 함량이 매우 높았고 질소 결핍시에도 그 함량이 높게 유지되어 질소 요구도가 높은 종이었다 질소 제한조건에서 영양염 홉수 측정 결과에서 반포화계수($K_s$)와 최대흡수율 ($V_m$)은 각각 36 ${\sim}$ 61 ${\mu}M$ 및 0.28 ${\sim}$ 0.35 ${\mu}mol\;cell\;{\cdot}\;hr^{-1}$ 범위였다. M. aeruginosa의 $K_5$값은 매우 높았고 $V_m$도 높은 편이었다. $K_s$와 흡수력 $V_m$은 미세조류의 영양상태 즉 영양염의 세포내 함량(Q)이나 제한영양염의 결핍의 강도의 영향을 받고 미세조류 생장균과도 관련이 있다. M. aeruginosa는 다른 미세조류에 비하여 세포내 질소 함량과 생장률이 높기 매문에 질소와 인에 대한 횹수율이 높을 것이다. 그러나 질소 흡수력의 반포화계수 $K_s$값이 높고 $V_m/K_s$비율은 낮아 수게에서 질소가 저농도 일 때에는 다른 미세조류와 비교하면 경쟁력이 떨어지고 질소에 대한 기질 친화력은 약한 것으로 나타났다. 낙동강 하류지역에서 M. aeruginosa가 대발생하는 시기에 수중 영양염의 농도 변동은 M. aeruginosa의 영양생리 kinetics 특성과 잘 부합하는 것으로 나타났다.

Keywords

References

  1. Caperon, J. 1968. Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology 49: 866-872 https://doi.org/10.2307/1936538
  2. Caperon, J. and J. Meyer. 1972. Nitrogen limited growth of marine phytoplankton. I. Changes in population characteristics with steady state growth rate. Deep-Sea Res. 19: 601-618
  3. Carpenter, E.J. and R.R.L. Guillard. 1971. Intraspecific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52: 183-185 https://doi.org/10.2307/1934753
  4. Cho, K.J. and J.G. Shin. 1997. Dynamics of inorganic N∙P nutrient from midstream to downstream of the Naktong River. Korean J. Limnol. 30: 85-95
  5. Cho, K.J. and J.K. Shin. 1998. Dynamics of inorganic N∙P nutrient and planktonic algae during summer and winter in downstream of the Nakdong River. Korean J. Limnol. 31: 67-75
  6. Conway, H.L., P.J. Harrison and C.O. Davis. 1976. Marine diatoms grown in chemostats under silicate or ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient. Mar. Biol. 35: 187-199 https://doi.org/10.1007/BF00390940
  7. Cunningham, A. 1984. The impulse response of Chlamydomonas reinhardii in nitrite-limited chemostat culture. Biotech. Bioeng. 26: 1430-1435 https://doi.org/10.1002/bit.260261206
  8. Dortch, Q., J.R. Clayton, S.S. Thoresen, S.L. Bressler and S.I. Ahmed. 1982. Response of marine phytoplankton to nitrogen deficiency : decresed nitrate uptake vs. enhanced ammonium uptake. Mar. Biol., 70: 13-19 https://doi.org/10.1007/BF00397291
  9. Droop, M.R. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition of Monochrysis lutherii. J. Mar. Biol. Assoc. U.K. 48: 689-733 https://doi.org/10.1017/S0025315400019238
  10. Droop, M.R. 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264-272
  11. Dugdale, R.C. 1967. Nutrient limitation in the sea: dynamics, identification and significance. Limnol. Oceanogr. 12: 685-695 https://doi.org/10.4319/lo.1967.12.4.0685
  12. Eppley, R.W., J.N. Rogers and J.J. McCarthy. 1969. Halfsaturation constant for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-920 https://doi.org/10.4319/lo.1969.14.6.0912
  13. Fuhs, G.W., S.D. Demmerle, E. Canelli and M. Chen. 1972. Characterization of phosphorus-limited algae (with reflections on the limiting-nutrient concept). In: Proceedings of the Special Symposium on Nutrients and Eutrophication. Am. Soc. Limnol. Oceanogr. Spec. Sym. 1: 113-132
  14. Goldman J.C and P.M. Gilbert. 1982. Comparative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827 https://doi.org/10.4319/lo.1982.27.5.0814
  15. Goldman, J.C. and D.G. Peavey. 1979. Steady-state growth and chemical composition of the marine chlorophyte dunaliella tertiolecta in nitrogen-limited continuous culture. Appl. Environ. Microbiol. 38: 894-901
  16. Guillard, R.R.L. and C.J. Lorenzen. 1972. Yellow green algae with chlorophyllide c. J. Phycol. 8: 10-14
  17. Harrison, P.J., J.S. Parslow and H.L. Conway. 1989. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser. 52: 301-312 https://doi.org/10.3354/meps052301
  18. Harrison, P.J., P.A. Thompson and G.S. Calderwood. 1990. Effectes of nutrient and light limitation on the biochemical composition of phytoplankton. J. Appl. Phycol. 2: 45-56 https://doi.org/10.1007/BF02179768
  19. Healey F.P. and L.L. Hendzel. 1980. Physiology indicators of nitrogen deficiency in lake phytoplankton. Can. J. Fish. Aquat. Sci. 37: 442-453 https://doi.org/10.1139/f80-058
  20. Kilham, S.S. 1986. Dynamics of Lake Michigan natural phytoplankton communities in continuous cultures along a Si:P loading gradient. Can. J. Fish. Aquatic. Sci. 43: 351-360 https://doi.org/10.1139/f86-045
  21. Nakamura, Y. 1985a. Ammonium uptake kinetics and interactions between nitrate and ammonium uptake in Chattonella antiqua. J. Oceanogr. Soc. Japan 38: 33-38
  22. Nakamura, Y. 1985b. Kinetics of nitrogen or phosphorus limited growth and effects of growth conditions on nutrient uptake in Chattonella antiqua. J. Oceanogr. Soc. Japan 41: 381-387 https://doi.org/10.1007/BF02109032
  23. Nakamura, Y. and M.M. Watanabe. 1983. Nitrate and phosphate uptake kinetics of Chattonella antiqua grown in light/dark cycles. J. Oceanogr. Soc. Japan 39: 167-170 https://doi.org/10.1007/BF02070260
  24. Nusch E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 14: 14-36
  25. OECD. 1982. Eutrophication of Waters; Monitoring, Assessment and Control. Organization for Economic Co-operation and Development, Paris. 154pp
  26. Oh, H.M. and G.Y. Rhee. 1991. A comparative study of microalgae isolated from flooded rice paddies: lightlimited growth, C fixation, growth efficiency and relative N and P requirement. J. Appl. Phycol. 3: 211-220 https://doi.org/10.1007/BF00003579
  27. Paerl, H.W. 1988. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnol. Oceanogr. 33: 823-847 https://doi.org/10.4319/lo.1988.33.4_part_2.0823
  28. Parslow, J.S., P.J. Harrison and P.A. Thompson. 1984. Development of rapid ammonium uptake during starvation of batch and chemostat cultures of the marine diatom Thalassiosira pseudonana. Mar. Biol. 83: 43-50 https://doi.org/10.1007/BF00393084
  29. Reynolds, C.S. and A.E. Walsby. 1975. Water blooms. Biol. Rev. 50: 437-481 https://doi.org/10.1111/j.1469-185X.1975.tb01060.x
  30. Reynolds, C.S., G.H.M Jaworski, H.A. Cmiech and G.F. Leedale. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. emend. Elenkin. Phil. Trans. R. Soc. Lond. B. 293: 419-476 https://doi.org/10.1098/rstb.1981.0081
  31. Rhee, G.-Y. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495-506
  32. Rhee, G.-Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10-25 https://doi.org/10.4319/lo.1978.23.1.0010
  33. Rhee, G.-Y. 1980. Continuous culture in phytoplankton ecology. In: Advances in Aquatic Microbiology (M.R. Droop and H.W. Jannasch, eds.). Academic Press Inc. Ltd., London. pp. 151-203
  34. Rhee, G.-Y. and I.J. Gotham. 1980. Optimum N:P ratios and coexistence of phytoplankton algae. J. Phycol. 16: 486-489 https://doi.org/10.1111/j.1529-8817.1980.tb03065.x
  35. Rippka, R., J. Duruelles, J.B. Waterbury, M. Herdman and R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61 https://doi.org/10.1099/00221287-111-1-1
  36. Sakamoto, M. 1989. Inorganic carbon and ammonium uptake by phytoplankton nitrogen depleted waters in Lake Suwa. Japanese J. Limnol. 50: 45-51 https://doi.org/10.3739/rikusui.50.45
  37. Sciandra, A. 1991. Coupling and uncoupling between nitrate uptake and growth rate in Prorocentrum minimum( Dinophyceae) under different frequencies of pulsed nitrate supply. Mar. Ecol. Prog. Ser. 72: 261-269 https://doi.org/10.3354/meps072261
  38. Sciandra, A. and P. Ramani. 1994. The steady states of continuous cultures with low rates of medium renewal per cell. J. Exp. Mar. Biol. Ecol. 178: 1-15 https://doi.org/10.1016/0022-0981(94)90221-6
  39. Smith V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671 https://doi.org/10.1126/science.221.4611.669
  40. Suttle, C.A. and P.J. Harrison. 1988. Ammonium and phosphate uptake rates, N : P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 33: 186-202 https://doi.org/10.4319/lo.1988.33.2.0186
  41. Takamura, N., A. Otsuki, M. Aizaki and Y. Nojiri. 1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch. Hydrobiol. 124: 129-148
  42. Takamura, N., T. Iwakuma and M. Yasuno. 1987. Uptake of C and N (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. J. Plank. Res. 9: 151-165 https://doi.org/10.1093/plankt/9.1.151
  43. Tilman, D. 1981. Tests of resource competition theory using from species of Lake Michigan algae. Ecology 62: 802-815 https://doi.org/10.2307/1937747
  44. Tilman, D. and S.S. Kilham. 1976. Phosphate and silicate growth and uptake kinetics of the diatom Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375-383
  45. van Donk, E. and S.S. Kilham. 1990. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26: 40-50 https://doi.org/10.1111/j.0022-3646.1990.00040.x
  46. Watanabe, T. and T. Miyazaki. 1996. Maximum ammonium uptake retes of Scenedesmus quadricauda and Microcystis navacekii grown under nitrogen limitation and implications for competition. J. Phycol. 32: 243-249 https://doi.org/10.1111/j.0022-3646.1996.00243.x
  47. Wynne, D. and G.-Y. Rhee. 1986. Effect of light intensity and quality on the relative N and P requirement (the optimum N : P ratio) of marine planktonic algae. J. Plank. Res. 8: 91-103 https://doi.org/10.1093/plankt/8.1.91
  48. Xie, L., P. Xie, S. Li, H. Tang and H. Liu. 2003. The low TN:TP ratio, a cause or a result of Microcystis blooms ? Wat. Res. 37: 2073-2080 https://doi.org/10.1016/S0043-1354(02)00532-8
  49. Zevenboom, W. and L. Mur. 1978. N-uptake and pigmentation of N-limited chemostat cultures and natural populations of Oscillatoria agardhii. Mitt. Internat. Verein. Limnol. 21: 261-274
  50. Zohary, T. and C.M. Breen. 1989. Environmental factors favouring the formation of Microcystis aeruginosa hyperscums in a hypertrophic lake. Hydrobiologia 178: 179-192 https://doi.org/10.1007/BF00006025