Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem

팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계

  • Published : 2006.09.30

Abstract

This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.

2005년 4월부터 12월까지 팔당호 생태계에서 식물플랑크톤 동물플랑크톤 간의 영양적 관계를 파악하기 위하여 플랑크톤 구조 분석과 섭식실험을 실시하였다. 동물플랑크톤은 소형 (MICZ: 60{\sim}20\;{\mu}m$)과 대형동물플랑크톤 (MACZ: >$200\;{\mu}m$)으로 구분하며 각기 식물플랑크톤에 대한 여과율과 탄소전달율을 측정하였다. 섭식실험은 현장 동물플랑크톤의 0, 2, 4, 8배로 농도 차이를 두어 2회 반복 실험을 실시하였다. 두 지점에서 식물플랑크톤 군집은 규조류 (Aulacoseira, Cyclotella )가 수적으로 우점하였으나, 탄소생물량은 편모조류 (Cryptomonas ovata)가 높았다. 두 지점 모두 동물플랑크톤 군집 내에서 윤충류 (Brachionus, Keratella, Polyathra)가 수적으로 크게 우점하였으나, 탄소생물량은 지각류 (Daphnia)가 가장 높았다. 동물플랑크톤은 봄에 높은 밀도와 탄소생물량을 보였고 여름철 집중강우 시기를 기점으로 크게 감소하였다. 지점별로는 경안천에서 상대적으로 높은 탄소생물량이 나타났다. 동물플랑크톤 여과율과 탄소전달율은 두 지점 모두 봄 동안에 높았으나 여름 이후에 낮아졌으며, 탄소전달율의 변화는 동물플랑크톤 생물량의 변화와 유사하게 나타났다. 군집여과율과 식물플랑크톤에 대한 탄소전달율은 MACZ가 MICZ보다 높았고, 그 정도는 경안천에서 더 높게 나타났다. 여름철의 집중강우로 인한 짧은 체류시간과 수체의 교란이 동물플랑크톤의 섭식에 영향을 미치는 것으로 파악되었다.

Keywords

References

  1. 국립환경연구원. 1996. 호소내 오염하천 유입부의 식물에 의한 정화처리 연구(II), NIER No. 96-17-488
  2. 국립환경연구원. 2003. 낙동강수계 수중생태계 모델인자 조사. 최종보고서
  3. 김종민, 노혜란, 허성남, 양희정, 박준대. 2005. 강우 및 유입 하 천수가 팔당호 수질에 미치는 영향분석. 한국물환경학회지 21: 277-283
  4. 김종민, 박준대, 노혜란, 한명수. 2002. 소양호와 팔당호의 수질 의 수직 및 계절적 변화. 육수지 35: 10-20
  5. 서윤수, 이길철, 김동군, 유재근, 이인선, 송준상, 허성남. 1989. 수질환경기준달성 최적화 방안에 관한 연구 (I): 팔당댐 유 역수질 및 유출부하량. 국립 환경연구원보 11: 143-152
  6. 이 경, 정영호. 1983. 한강 중심수역의 규조류에 대한 계절적 소장과 분포에 따른 상관관계, 성심여자대학 논문집 14: 37-47
  7. 정영호, 이 경. 1981. 팔당댐 수역을 중심으로 한 식물성플랑 크톤의 현존량과 생산력, 자연보존연구보고서 3: 383-390
  8. 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적
  9. 한명수, 홍성수, 어윤열. 2002. 팔당호의 생태학적 연구 4.경안 천 하류의 영양염 및 입자태 유기물 거동과 식물플랑크톤 천이. 육수지 35: 1-9
  10. 환경부. 1996. 수질오염공정시험방법
  11. Akiyoshi, S., S. Ban and T. Ikeda. 2003. Seasonal change in nano/micro-Zooplankton herb ivory and heterotrophic nano-flagellates bacterivory off Cape Esan, Southwestern Hokkaido, Japan, J. of Oceanogr. 59: 609-618 https://doi.org/10.1023/B:JOCE.0000009590.29546.aa
  12. Andersen, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814 https://doi.org/10.4319/lo.1991.36.4.0807
  13. APHA-AWWA-WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed., APHAAWWA- WEF. Washington D.C. USA
  14. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the great lakes. A guide to the identification and ecology of the common crustacean species. The university of Wisconsin Press
  15. Baranyi, C., T. Hein, C. Holarek, S. Keckeis and F. Schiemer. 2002. Zooplankton biomass and community structure in a Danube River floodplain. Freshwat. Biol. 47: 473-482 https://doi.org/10.1046/j.1365-2427.2002.00822.x
  16. Brett, M.T., K. Wiackowski, F.S. Lubnow, A. Mueller- Solger, J.J. Elser and C.R. Goldman. 1994. Speciesdependent effects zooplankton on planktonic ecosystem processes in castle lake, California. Limnol. Oceanogr. 75: 2234-2254
  17. Brock, T.D. 1985. A Eutrophic Lake, Lake Mendota, Wisconsin. Springer-Verlag. New York. p. 308
  18. Burkill, P.H., E.S. Edwards and M.A. Sleigh. 1995. Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep Sea Res II. 42: 1277-1290 https://doi.org/10.1016/0967-0645(95)00060-4
  19. Carrick, H.J., G.L. Fahnenstiel, E.F. Stoermer and R.G. Wetzel. 1991. The importance of zooplankton-protozoan trophic coupling in Lake Michigan. Limnol. Oceanogr. 36: 1335-1345 https://doi.org/10.4319/lo.1991.36.7.1335
  20. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390 https://doi.org/10.1139/f85-173
  21. David, G.A., M. Alvarez-Cobelas, C. Rojo and S. Sánchez- Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semiarid frewater wetland (central Spain). J. Plankton Res. 22: 2075-2093 https://doi.org/10.1093/plankt/22.11.2075
  22. Dawidowicz, P. 1990. Effectiveness of phytoplankton control by large-bodied and small-bodued zooplankton. Hydrobiol. 200/201: 43-47 https://doi.org/10.1007/BF02530327
  23. Descy, J.-P. 1993. Ecology of the phytoplankton of the river Moselle-effects of disturbances on community structure and diversity. Hydrobiol. 249: 111-116 https://doi.org/10.1007/BF00008847
  24. Dickman, M. 1969. Someeffects of lake renewal on phytoplankton productivity and species composition. Limnol. Oceanogr. 14: 660-666 https://doi.org/10.4319/lo.1969.14.5.0660
  25. Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications. p. 247-249
  26. Gawler, M., G. Balvay, P. Blanc, J.-C. Druat and J.P. Pelletier. 1988. Plankton ecology of Lake Geneva: a test of the PEG-model. Arch. Hydrobiol. 114: 161-174
  27. Gilbert, J.J. 1989. The effect of daphnia interference on a natural rotifer and ciliate community: short term bottle experiments. Limnol. Oceanogr. 34: 606-617 https://doi.org/10.4319/lo.1989.34.3.0606
  28. Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177-208 https://doi.org/10.1146/annurev.es.07.110176.001141
  29. Heath, R.T., S.J. Hwang and M. Munawar. 2003. A hypothesis for the assessment of the importance of microbial food web: Linkages in nearshore and offshore habitats of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management 6(3): 231-239 https://doi.org/10.1080/14634980301495
  30. Holland, M.M. 1996. Wetlands and environmental gradients. In: Mulamootil, G., B.G. Warner and E.A. McBean (eds), Wetlands: Environmental Gradients, Boundaries and Buffers. CRC Lewis Publishers, Boca Raton. p. 19- 43
  31. Hwang, S.J. 1995. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie: The significance of the microbial loop for higher trophic levels. PhD Dissertation, Kent State University, Kent, OH
  32. Hwang, S.J., H.S. Kim, J.K. Shin and J.M. Oh. 2004. Grazing effects of a freshwater bivalve (Corbiclua leana Prime) and large zooplankton on phytoplanton communities in two Korean lakes. Hydrobiol. 515: 161-179 https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  33. Johnston, C.A. and R.J. Naiman, 1987. Boundary dynamics at the aquatic-terrestrial interface: The influence of beaver and geomorphology. Landscape Ecol. 1: 47-57 https://doi.org/10.1007/BF02275265
  34. Kagami, M., T. Yoshida, T.B. Gurung and J. Urabe. 2002. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia 133: 356-363 https://doi.org/10.1007/s00442-002-1035-0
  35. Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler and F. Schiemer. 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. J. Plankton Res. 25: 243-253 https://doi.org/10.1093/plankt/25.3.243
  36. Kellar, P.E., S.A. Paulson and L.J. Pauloson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Technical Report, Lake Mead Limnological Research Center, University of Nevada, Las Vegas, p. 234
  37. Kim, H.W. and G.J. Joo. 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiol. 438: 171-184 https://doi.org/10.1023/A:1004185216043
  38. Kim, H.W., K. Ha and G.J. Joo. 1998. Eutrophication of the lower Nakdong River after the construction of an estuarine dam in 1987. Internat. Rev. Hydrobiol. 83: 65-72 https://doi.org/10.1002/iroh.19980830107
  39. Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the riverreservoir hybrid system (Nakdong River, Korea): Its role in cintrolling the phytoplankton biomass. Korean J. Limnol. 36: 420-426
  40. Kim, H.W., S.J. Hwang and G.J. Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22: 1559-1577 https://doi.org/10.1093/plankt/22.8.1559
  41. Kim, H.W., S.J. Hwang, K.H. Kim, M.H. Jang, G.J. Joo and N. Walz. 2002. Longitudinal difference in zooplankton grazing on phyto- and bacterioplankton in the Nakdong River (Korea). Internat. Rev. Hydrobiol. 87: 281-293 https://doi.org/10.1002/1522-2632(200205)87:2/3<281::AID-IROH281>3.0.CO;2-V
  42. Kitchell, J.F. and S.R. Carpenter. 1996. Cascading trophic interaction. In S.R. Carpenter & J.F. Kitchell (eds), The trophic cascade in Lakes. Cambridge University Press. p. 1-14
  43. Lampert, W., W. Flecker, H. Rai and B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31: 478-490 https://doi.org/10.4319/lo.1986.31.3.0478
  44. Landry, M.R., C.J. Lorenzen and W.K. Peterson. 1994. Mesozooplankton grazing in the Southern California Bight. II. Grazing impact and particulate flux. Mar Ecol Prog Ser. 115: 73-85 https://doi.org/10.3354/meps115073
  45. Lehman, J.T. and C.D. Sandgren. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnol. Oceanogr. 30: 34-46 https://doi.org/10.4319/lo.1985.30.1.0034
  46. Margalef, R. 1997. Our Biosphere. Excellence in Ecology 10. Ecology Institute, Oldenburg/Luhe, Germany
  47. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat. Biol. 2: 361-385 https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  48. Mullin, M.M., P.R. Sloan and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307-310 https://doi.org/10.4319/lo.1966.11.2.0307
  49. Muylaert, K. and W. Vyverman. 2006. Impact of a flood event on the planktonic food web of the Schelde estuary (Belgium) in spring 1998. Hydrobiol. 559: 385-394 https://doi.org/10.1007/s10750-005-1081-9
  50. Muylaert, K., J.V. Wichelen, K. Sabbe and W. Vyverman, 2001. Short-term phytoplankton dynamics in a freshwater tidal estuary. Arch. Hydrobiol. 150: 269-288 https://doi.org/10.1127/archiv-hydrobiol/150/2001/269
  51. Pace, M.L. and D. Vaque. 1994. The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes. Limnol. Oceanogr. 39: 985-996 https://doi.org/10.4319/lo.1994.39.5.0985
  52. Perissinotto, R. 1992. Mesozooplankton size-selectivity and grazing impact on the phytoplankton community of the Prince Edward Archipelago (Southern Ocean). Mar Ecol Prog Ser. 79: 243-258 https://doi.org/10.3354/meps079243
  53. Pirjo, S.H., M.T. Brett and C.R. Goldman. 1999. Temporal and vertical dynamics of phytoplankton net growth in Castle Lake, California. J. Plankton Res. 21: 373-385 https://doi.org/10.1093/plankt/21.2.373
  54. Quintana, X.D., R. Moreno-Amich and F.A. Comín. 1998a. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 1: Differential confinement of nutrients. J. Plankton Res. 20: 2089-2107 https://doi.org/10.1093/plankt/20.11.2089
  55. Quintana, X.D., F.A. Comín and R. Moreno-Amich. 1998b. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 2: Response of a zooplankton community to disturbances. J. Plankton Res. 20: 2109-2127 https://doi.org/10.1093/plankt/20.11.2109
  56. Reynolds, C.S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge
  57. Reynolds, C.S. 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 139: 1-33
  58. Scavia, D. and G.L. Fahnenstiel. 1987. Dynamics of Lake Michigan phytoplankton: Mechanisms controlling epilimnetic communities. J. Great Lakes Res. 13: 103-120 https://doi.org/10.1016/S0380-1330(87)71635-9
  59. Shiel, R.J. and K.F. Walker. 1984. Zooplankton of regulated and unregulated rivers: The murray darling river system, Australia. In 'Regulated Rivers.' (Eds. Lillehammer, A. and S.J. Saltveit) p. 263-270 (University of Oslo Press: Oslo)
  60. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433- 471
  61. Stanley, E.H., S.G. Fisher and N.B. Grimm. 1997. Ecosystem expansion and contraction in streams. Bio Science 47: 427-435 https://doi.org/10.2307/1313058
  62. Stemberger, R.S. 1979. A guide to rotifers of the Laurentian Great Lakes. EPA-600/4-79-021
  63. Sterner, R.W. 1989. The role of grazers in phytoplankton succession. In Sommer U (ed) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York, p. 107-170
  64. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418 https://doi.org/10.4319/lo.1967.12.3.0411
  65. Strickland, J.D. and T.R. Parsons. 1972. A pratical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada 167: 65-70
  66. Thys, I., B. Lesporcq and J.P. Descy. 2003. Seasonal shifts in phytoplankton ingestion by Daphnia galeata, assessed by analysis of marker pigments. J. Plankton Res. 25: 1471-1484 https://doi.org/10.1093/plankt/fbg103
  67. Vanni, M.J. and J. Temte. 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 35: 697-709 https://doi.org/10.4319/lo.1990.35.3.0697
  68. Walz, N. and M. Welker. 1998. Plankton development in a rapidly flushed lake in the River Spree system (Neuendorfer See, Northeast Germany). J. Plankton Res. 20: 2071-2087 https://doi.org/10.1093/plankt/20.11.2071
  69. Ward, P., A. Atkinson, A. Murray, A.G. Wood, R. Williams and S.A. Poulet. 1995. The summer zooplankton community at South Georgia: biomass, vertical migration and grazing. Polar Biol. 15: 195-208
  70. Wickham, S.A. and J.J. Gilbert. 1991. Relative vulnerabilities of natural rotifer and ciliate communities to cladocerans: laboratory and field experiments. Freshwater Biol. 26: 77-86 https://doi.org/10.1111/j.1365-2427.1991.tb00510.x